Mineralogy and thermometry studies of Sirzar antimony prospect area, north of Torbat-e-Jam, Khorasan Razavi Province

Abstract

The Sirzar Sb prospecting area is located in northeast of Torbat -e- Jam in Khorasan Razavi Province. Mineralization is found both as vein and replacement within carbonate rock (Permian). Two primary stages of mineralization are: 1) galena ± pyrite ± chalcopyrite ± sphalerite ± sulfosalte ± Cu-Sb sulfides, quartz and barite. 2) Stibnite ± pyrite ± sphalerite ± fuloppite, quartz, barite, dolomite and calcite. Minerals which are formed due to weathering and oxidation include valentinite, bindheimite, covellite, malachite, azurite, anglesite, cerrusite, geothite, hematite and Sb-oxides. Main alteration is: silicification, baritization and dolomitization. SEM analyses of galena revealed high content of Ag, As and Sb and low Bi. This indicates that galena was formed at low temperature. Sulfosalte within galena also contain higher Sb which prove this case. Stibnite also contains some Ag. Fluid inclusion microthermometry on quartz, calcite and barite revealed that the first stage of mineralization were formed between 371-317°C and the second stage associated with quartz, barite, and dolomite were formed between 275-188 °C and associated with calcite is between 197-132°C. Sirzar Sb mineralized area is similar to Xikuangshan mine in China with respect to host rock, mineral paragnesis and type of mineralization. Based on mineral chemistry and fluid inclusion microthermometry, Sirzar is a low temperature epithermal deposit.

Keywords


[1] Akcay M., Ozkan H.M., Moon C.J., Spiro B., “Geology, mineralogy and geochemistry of the gold- bearing stibnite and cinnabar deposits in the Emirli and Halikoy areas (Odemis, Izmir, West Turkey)”, Ore Geology Reviews 29 (2006) 19-51.

[2] Vearncombe J.R., Cheshire P.E., De Beer J.H., Killick A.M., Mallinson W.S., McCourt S., Stettler E.E., “Structures related to the antimony line, Murchison schist belt, Kaapvaal craton, South Africa”, Tectonophysics 154 (1988) 285– 308.

[3] Chovan M., Slavkay M., Micha´lek J., “Ore mineralisation of the Dumbierske Tatry Mts. (Western Carpatians, Slovakia)”, Geologica Carpathica 47 (1996) 371– 382.

[4] Wu J., “Antimony vein deposits of China”, Ore Geology Reviews 8 (1993) 213– 232.

[5] Mao J.W., Qiu Y.M., Goldfarb R.J., Zhang Z.C., Garwin S., Ren F.S., “Geology, distribution, and classification of gold deposits in the western Qinling belt, central China”, Mineralium Deposita 37 (2002) 352– 377.

[6] Peng J.-T., Hu R.-Z., Burnard P.G., “Samarium–neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer”, Chemical Geology 200 (2003) 129– 136.

[7] قائمی ف.، حسینی ک.، "نقشه زمین‌شناسی 1:100000 سفید سنگ"، سازمان زمین‌شناسی کشور (1378).

[8] سعادت س.، شهاب‌پور ج.، "نگرشی بر کانسارسازی آنتیموان در منطقه سیرزار (شمال شرق خراسان)"، مجله بلورشناسی و کانی‌شناسی ایران، شماره یک (1376) ص 45- 58.

[9] قائمی ف.، "تحلیل ساختاری و بررسی رابطه رسوبگذاری با تکتونیک ناحیه آق دربند در شمال شرقی ایران"، رساله دکتری تکتونیک، دانشگاه شهید بهشتی (1383) 277 صفحه.

[10] Boyle R.W., Jonasson I.R., “The geochemistry of antimony and its use as an indicator element in geochemical prospecting”, Journal of Geochemical Exploration 20 (1984) 223-302.

[11] رحیم‌پور بناب ح.، " سنگ‌شناسی کربناته: ارتباط دیاژنز و تکامل تخلخل"، انتشارات دانشگاه تهران (1384) 487 ص.

[12] Malakhov A.A., “Bismuth and antimony in galenas as indicators of some conditions of ore formation”, Geochemistry International 7 (1968) 1055-1068.

[13] Mozgova N.N., “Principles of classification of sulfosalts”, 27th International Geological Congress proceedings (1984) 53-65.

[14] Mozgova N.N., “Non-stoichiometry and homologous series in sulfosalts. – Moscow”, Nauka 264 (1985).

[15] Mozgova N.N., “Sulfosalt mineralogy today: Modern approaches to ore and environmental mineralogy”, MSF Mini-symposium, held in conjunction with IMA, Espoo Finland, June 11-17 (2000).

[16] Williams-Jones A.E., Normand C., “Controls of mineral parageneses in the system Fe–Sb–S–O”, Economic Geology 92 (1997) 308–324.

[17] Fan D., Zhang T., Ye J., “The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan, China”, Ore Geology Reviews 24 (2004) 121–133.

[18] Dill H.G., “Evolution of Sb mineralisation in modern fold belts: a comparison of the Sb mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia)”, Mineralium Deposita 33 (1998) 359–378.

[19] Kontak D.J., Horne R.J., Smith P.K., “Hydrothermal characterization of the West Gore Sb–Au deposit, Meguma terrane, Nova Scotia, Canada”, Economic Geology 91 (1996) 1239– 1262.

[20] Ortega L., Vindel E., “Evolution of ore forming fluids associated with late Hercynian antimony deposits in centralwestern Spain—a case study of Mari Rosa and El Juncalon”, European Journal of Mineralogy 7 (1995) 655– 673.

[21] Wagner T., Cook N.J., “Late Variscan antimony mineralization in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems”, Mineralium Deposita 35 (2000) 206– 222.

[22] Ashley P.M., Craw D., “Carrick range Au and Sb mineralization in Caples Terrane, Otago schist, Central Otago, New Zealand”, New Zealand Journal of Geology and Geophysics 38 (1995) 137– 149.

[23] Gokee A., Spiro B., “Sulfur isotope study of the antimony and mercury deposits in Beydagi (Izmir; western Turkey) area and the origin of the sulfur in stibnite and cinnabar”, Turkish Journal of Earth Sciences 4 (1995) 23– 29.

[24] Dill H.G., Melcher F., Botz R., “Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia”, Ore Geology Reviwes 34 (2008) 242-262.