بررسی سنگ نگاری، ویژگی‌های ژئوشیمیایی و محیط تکتونوماگمایی توده‌ی گرانیتوئیدی میزبان کانسار مس پورفیری میدوک، شهربابک- کرمان

نویسندگان

1 دانشگاه بوعلی‌سینا همدان

2 دانشگاه شهید باهنر کرمان

چکیده

کانسار مس پورفیری میدوک در بخش شمال غربی مجموعه­ی آتشفشانی- رسوبی دهج- ساردوئیه کرمان (جنوب شرقی کمربند آتشفشانی- نفوذی ارومیه- دختر) و در 42 کیلومتری شمال­شرق شهرستان شهربابک واقع شده است. کانسار مس پورفیری میدوک با سن 12.5 میلیون سال، در سنگ­های آتشفشانی و آذرآواری ائوسن با ترکیب آندزیت، آندزیت­بازالت و داسیت (مجموعه رازک)، جایگزین شده است. بررسی­های سنگ­شناسی میکروسکوپی نشان می­دهد که این توده از گرانودیوریت، کوارتزدیوریت و دیوریت تشکیل شده است. از نظر کانی­شناسی، کانی­های وابسته به میدوک پورفیری شامل پلاژیوکلاز، پتاسیم­فلدسپار، آمفیبول، بیوتیت و کوارتزند. سریسیت، کلریت، اپیدوت و مگنتیت نیزکانی­های ثانویه این مجموعه را شامل می­شوند. از نظر ویژگی­های ژئوشیمیایی، سنگ­های گرانیتوئیدی میدوک پورفیری جزء سری ماگمایی قلیایی و کلسیک قلیایی و از نوع گرانیت­های متا تا پرآلومین و I هستند. بررسی­های زمین­ساختی حاکی از آن است که کانسار مس میدوک دارای ویژگی کانسارهای تشکیل شده در حاشیه­ی قاره­ای فعال است. همچنین این بررسی­ها نشان می­دهد که کانسار مس میدوک در یک محیط زمین­ساختی پس از برخورد صفحات ایران مرکزی و عربستان و در مراحل نهایی کوهزایی (رژیم تکتونیکی فشارشی) و پس از اتمام فرورانش پوسته­ی اقیانوسی نئوتتیس تشکیل و جایگزین شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

The study of petrography, geochemical characteristics and tectono magmatic setting of Meiduk porphyry copper deposit, Shahrebabak- Kerman

چکیده [English]

The Meiduk porphyry copper deposit is located in the northwest of Dehaj- Sarduieh volcano- sedimentary complex in Kerman (southeast of Urumieh- Dokhtar volcano-plutonic belt) and about 42 Km northeast of the Shahr-Babak. The Meiduk porphyry stock with an age 12.5 Ma intruted into Eocene volcanic rocks with andesite, andesitic-basalt and dacite composition (Razak complex). Petrographic studies indicate that this deposit consists mainly of diorite, q-diorite and granodiorit rocks. Mineralogically, Meiduk porphyry rocks contain plagioclase, K-feldespar amphibole, biotite and quartz. Sericite, cholerite, epidote and magnetite are secondry phases. Geochemically, the Meiduk porphyry rocks are alkali and alkali- calcic, meta to peralumine and I-type granitoids. Tectonic studies indicate that the Meiduk porphyry were emplaced at active continental margine. Tectonic characteristics also indicate that, after the collision of the Arabian and Iranian plates, the Meiduk porphyry was emplaced during a late orogenic stage of arc development (compressional tectonic regimes) in a post-collisional tectonic setting at the end of magmatism related to Neo-Tethyan subduction system.

کلیدواژه‌ها [English]

  • Meiduk
  • Urumieh-Dokhtar volcano-plutonic belt
  • Geochemistry
  • post-collisional tectonic setting
[1] Shahabpour J., “Behaviour of Cu and Mo in the SarCheshmeh porphyry Cu deposit, Kerman, Iran” CIM Bull., 93 , (2000) 44 – 51.

[2] Outomec., “Techno-economic feasibility study and relevant backing technical studies of Meiduk Copper Project”, Outokumpu, Finland, ( 1992 ) 171p .

[3] Hassanzadeh j., “Metallogenic and tectonomagmatic events in SE sectore of the Cenozoic active continental margine of central iran- Shahr- Babak, kerman province,” PHD thesis, university of California (1993) 201 p.

[4] McInnes B.I.A., Evans N.J., Belousova E., Griffin W.T., Andrew R.L., “Timing of minerlization and exhumation processes at the Sarcheshmeh and Meiduk porphyry Cu deposits, Kerman belt, Iran”, Mineral exploration and sustainable development , Eliopoulos et al. (eds), Millpress, Roterdam, ISBN 9077017 77 1, (2003) p 1197-1200.

[5] Dimitrijevic M., “Geology of Kerman region: institute for geological and mining exploration and institution of nuclear and other mineral raw materials”, Beograd-Yugoslavia, Iran Geol. Survey Rept. (1973) Yu/52.

[6] Saric A., Djordjevic M., Dimitrijevic M. N., “Geological map of Shahr-Babak, Scale 1/100000”, Geological Survey of Iran , ( 1971 ) Tehran, Iran .

[7] آلیانی ف.، علیرضایی ع.، مرادیان ع.، عباسلو ز.،˝ژئوشیمی و سنگ‌شناختی سنگ‌های آتشفشانی درونگیر کانسار مس میدوک کرمان˝، مجله بلورشناسی و کانی‌شناسی ایران، جلد هفدهم، شماره 3، (1388) 462-450.

[8] Wilt J.C., "Correspondence of alkalinity and ferric/ferrous ratios of igneous rocks associated with various types of porphyry-copper deposits. In: Pierce, F.W., Bolm, J.G. (Eds.), porphyry-Copper Deposits of the American Cordillera. Ariz. Geol. Soc. Digest 20 (1995) 180-200.

[9] Keith S.B., Swam M.M., "The great Laramide porphyry copper cluster of Arizona, Sonora, and New Mexico: the tectonic setting, petrology, and genesis of a world class porphyry metal cluster. In: Coyner, A.r., Fahey, P.L. (Eds.)", Geologyband ore Deposit of the American Cordillera. Geological Society of Nevada Symposium proceeding, Reno/Sparks, Nevada, Aprill 1995, pp. 1667-1747.

[10] De La Roche H., Leterrier J., Grandclaude P., Marchal M., ”A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses–its relationships with current nomenclature“, Chemical Geology 29, (1980)183–210.

[11] Frost R.B., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., "A Geochemical classification for Granitic Rocks", Journal of Petrology 42 (2001) 2033–2048.

[12] Maniar P.D., Piccoli P.M., “Tectonic discrimination of granitoids”, Geol Soc Am Bull, 101, (1989) pp 635-643.

[13] Waight T.E., Weaver S.D., Muir R.J., “The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled bysource H2O contents and generated during tectonic transition”, Contribution to Mineralogy and Petrology 130, (1998) 225–239.

[14] Pearce J.A., Harris N.B.W., Tindle A.G., “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks”, Journal of Petrology 25, (1984) 956–983.

















[15] Batchelor R.A., Bowden P., “Petrogenetic interpretation of granitoid rock series: using multinational parameters”, Chem. Geol., 48: (1985) 43-55.

[16] Newberry R.J., Burns L.E., Swanson S.E., Smith T.E., “Comparative petrologic evolution of the Sn and W granites of the Fairbanks-Circle area, interior Alaska. In: Stein H.J., Hannah, J.L. (Eds.). Ore-bearing Granite Systems; Petrogenesis and Mineralising Processes”, Geological Society of America, Special Paper 246, (1990) pp. 121–142.

[17] Sun S.S., McDonough W.F., “Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes: in Saunders, A.D., and Norry, M.J., eds., Magmatism in the ocean basins”, Geological Society Special Publications no. 42 (1989) p. 313-345.

[18] Richards J. P., Boyce A.J., Springle M.S., “Geologic evolution of Escondida Area, Northern Chile, A model for spatial and temporal localization of porphyry Cu minerlaization”, Economic Geology, v. 96 (2001) p. 271-305.

[19] Shafiei B., Shahabpour J., Haschke M., “Transition from Paleogene normal calc-alkaline to Neogene adakite-like plutonism and Cu-metallogeny in the Kerman porphyry copper belt: response to Neogene crustal thickening", Journal of Sciences. Islamic Republic of Iran, v 19 (2008) p. 67-84.

[20] Taghipour N., Aftabi A., Mathur R., “Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit”, The Society of Resource Geology 2: (2007)143–160.

[21] Shahabpour J., “Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz”, Journal of Asian Earth Science, v. 24 (2005) p. 405-417.

[22] علیرضایی علی، "ژئوشیمی سنگ‌های گرانیتوئیدی معدن مس میدوک و رابطه آن با کانسارسازی مس"، پایان نامه کارشناسی ارشد، دانشگاه بوعلی سینا همدان، (1388).