Mineralogy and mineral chemistry of lamprophyres in the NW Iran

Abstract

There are numerous outcrops of lamprophyric rocks, as sill and dikes, in the northwestern part of Iran. These rocks can be classified in two mica- and amphibole-rich types. Amphibole-rich type includes amphibole, olivine psudomorphs, and clinopyroxene phenocrysts in the matrix of feldspar and altered glass. Mica-rich lamprophyres include mica and clinopyroxene phenocrysts in the matrix of feldspar and glass. Amphiboles represent kaersutite composition and mica crystals mainly show phlogopitic composition. Clinopyroxene crystals have mainly salite-diopside composition. Clinopyroxenes in the amphibole-rich type have higher Al2O3 content. Studied lamprophyres are formed in a high oxygen fugacity condition and their magmas have been experienced low pressure crystallization. According to nature of minerals, mica-rich lamprophyres have calc alkaline nature and are minette and amphibole –rich type represents alkaline nature and can be consider as comptonite. Mica-rich lamprophyres originated from phlogopite and/or potassic amphibole bearing metasomatized lithospheric mantle in a orogenic tectonic setting. Amphibole-rich lamprophyres probably originated from a lherzolite mantle that includes fluid-bearing minerals.

Keywords


[1] Rock N.M.S., “Lamprophyres”, (1991) Blackie and Son, Glasgow.

[2] Woolley A.R., Bergman S.C., Le Bas M.J., Mitchell R.H., Rock N.M.S., Scott Smith B.H., “Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic and leucitic rocks”, Cannadian Mineralogist 34 (1996) 175–186.

[3] Seifert T., “Metallogeny and petrogenesis of Lamprophyres in the Mid-European Variscides”, (2008) IOS press, 303pp.

[4] آقازاده م.، "پترولوژی و ژئوشیمی گرانیتوئیدهای انزان، خان کندی و شیور داغ، شمال و شرق اهر، آذربایجان خاوری، با نگرشی بر کانی زایی وابسته"، رساله دکتری، دانشگاه تربیت مدرس (١٣٨٨) ٤٤٦ صفحه.

[5] آقازاده م.، بدرزاده ز.، "پترولوژی و پتروژنز لامپروفیرهای آلکالن و کالک آلکالن شمال غرب ایران"، فصلنامه علوم زمین، در حال انتشار (1392).

[6] شیردل ن.، "بررسی‌های پتروگرافی و پترولوژیکی توده های نفوذی شمال شرق هوراند (شرق منجاو)"، پایان نامه کارشناسی ارشد دانشگاه تبریز (1388) 150 صفحه.

[7] Aghazadeh M., Castro A., Rashidnejad Omran N., Emami M. H., Moinvaziri H., Badrzadeh Z., “The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW, Iran”, Journal of Asian Earth Sciences 38 (2010) 199–219.

[8] Hajalilou B., Moayyed M., Hosseinzadeh G., “Petrography, geochemistry and geodynamic environment of potassic alkaline rocks in Eslamy peninsula, northwest of Iran”, Journal of Earth System Science 118, No. 6 (2009) 643–657.

[9] Moayyed M., Moazzen M., Calagari A. A., Jahangiri A., Modjarrad M., “Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslamy peninsula, NW Iran: Implications for deep-mantle metasomatism”, Chemie der Erde/Geochemistry, 68 (2008) 141-154.

[10] Bea F., Montero P., Molina J. F., “Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila Batholith: a model for the generation of Variscan batholiths in Iberia”, Journal of Geology 107 (1999) 399-419.

[11] Bouabdli A., Dupuy C., Dostal J., “Geochemistry of Mesozoic alkaline lamprophyres and related rocks from the Tamazeght massif, High Atlas, Morocco”, Lithos 22 (1988) 43-58.

[12] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., “Nomenclature of amphiboles; report of the subcommittee on



amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, The Canadian Mineralogist 35(1997) 219–246.

[13] Morimoto N., Fabrise J., Ferguson A., Ginzburg I. V., Ross M., Seifert F.A., Zussman J., Akoi K., Gottardi G., "Numenclature of pyroxenes", Mineralogical Magazine, 52 (1988) 535-55.

[14] Rieder M., Cavazzini G., Yakonov Y.D., Frank-Kanetskii V.A., Gottardi G., Guggenheim S., Koval P.V., Müller, G., Neiva A.M.R., Radoslovich E.W., Robert J.L., Sassi F.P., Takeda H., Weiss Z., Wones D.R., “Nomenclature of the micas”, The Canadian Mineralogist 36 (3) (1998) 905–912.

[15] Foley S.F., “Experimental constraints on phlogopite chemistry in lamproites. II Effect of pressure-temperature variations”, European Journal of Mineralogy 2 (1990) 327-341.

[16] Mitchell R.H., “Titaniferous phlogopites from the Leucite lamproites of the West Kimberley area, Western Australia”, Contributions to Mineralogy and Petrology 76 (1981) 243-25l.

[17] Zhang M., Suddaby P, Thompson R. N., Dungan M. A., “Barian-titanian phlogopite from potassic lavas in northeast China: chemisry and paragenesis”, American Mineralogist 78 (1996) 1056-1065.

[18] Nisbet E. G., Pearce J. A., “Clinopyroxene composition in mafic lavas from different tectonic setting”, Ibid. 63, (1977) 149-60.

[19] LeBas N.J., “The role of aluminium in igneous clinopyroxenes with relatin to their parentage”, American journal of science, 260 (1962) 267 – 88.

[20] Kushiro I., “Si-Al relation in clinopyroxenes from igneous rocks”, American journal of sciences, 258 (1960) 548- 554.

[21] Schweitzer E.L., Papike J.J., Bence E., "Statistical analysis of clinopyroxenes from deep sea basalts", American Mineralogist 64 (1979) 501-513.

[22] Marcelot G., Maury R.C., Lefevre C., "Mineralogy of Erromango lava New Hebrides, Evidence of an early stage of fractionation in island arc basalts", Lithos 16, (1983) 135 -151.

[23] Shi P., ”Low-pressure phase relationships in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2 at 11008C, with implications for basaltic magmas”, Journal of Petrology 34 (1993) 743-762.

[24] Sisson T., Grove T., “Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism”, Contribiution to Mineralogy and Petrology 113 (1993) 143-166.

[25] Wass S.Y., "Multiple origins of clinopyroxenes in alkali basaltic rocks", Lithos 12 (1979) 115-132.

[26] Conticelli S., “Effects of crustal contamination on ultra potassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, central Italy”, Chemical Geology 149 (1998) 51-81.

[27] Aoki K., Shiba I., "Pyroxene from lherzolite inclusions of Itinomegata, Japan", Lithos 6(1973)41–51.

[28] Green T.H., Ringwood A. E., "Crystallization of garnet-bearing rhyodacite under high-pressure hydrous conditions", Journal of Geological Society of Australia 19 (1972) 203–212.

[29] Holm P.M., “Mineral chemistry of perpotassic lavas of the Vulsinian district, the Roman Province, Italy,” Mineralogical Magazine 46 (1982) 379-386.

[30] Carlier G., Lorand J.P., Audebaud E., Kienast J.R., “Petrology of unusual orthopyroxene-bearing minette suite From southeastern Peru, Eastern Andean Cordillera: Al-rich lamproites contaminated by peraluminous granites”, Journal of Volcanology and Geothermal Research 75 (1997) 59-87.

[31] Abdel-Rahman A.M., “Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas”, Journal of Petrology 35 (2) (1994) 525-541.

[32] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., “Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites”, Geomaterials (Mineralogy), Copmtes Rendus, Geoscience 337 (2005) 1415–1420.

[33] Fabries J., “Les types parageneitiques des amphiboles sodiques dans les roches magmatiques”, Bullten of Mineralogy 101 (1978) 155-165.

[34] Giret A., Bonin B., kger J.M., “Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes” The Canadian Mineralogist, 18 (1980) 481-495.

[35] Stephenson D., Upton B.G.J., “Ferromagnesian silicates in a differentiated alkaline complex: Kungnat Field, south Greenland”, Mineralogical Magazine 46 (1982) 283-300.