دمافشارسنجی توده‌های نفوذی غرب تفت بر پایه داده‌های شیمی کانی‌ها

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زمین‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

بررسی توده‌های گرانیتوئیدی غرب تفت، در بخش میانی پهنه ایران مرکزی، بیانگر حضور کانی‌های کوارتز، ارتوکلاز، پلاژیوکلاز به عنوان کانی‌های اصلی و آمفیبول، بیوتیت، اسفن، زیرکن و آپاتیت به عنوان کانی‌های فرعی است. در این سنگ­ها، بافت‌های دانه­ای دانه‌متوسط تا دانه‌ریز، گرانوفیری و میرمیکیتی دیده می‌شوند. داده‌های تجزیه شیمی کانی‌‎ها نشان می‌دهد که در این توده‎ها، آمفیبول‎های نوع کلسیمی با ماهیت منیزیوهورنبلند تا اکتینولیت در دمای oC 891-659، فشار Kbar 1/2-9/4 و عمق Km 4/4-6 متبلور شده‌اند. همچنین فلدسپارهای نوع الیگوکلاز تا آندزین متعلق به دمای oC 700-800، و بیوتیت‌های نوع منیزیم‌دار متعلق به دمای C° 700-750 متبلور شده‌اند. شیمی کانی بیوتیت نشانگر ماهیت گوشته‌ای ماگمای سازنده این سنگ‌هاست که طی صعود دچار آلایش پوسته‌ای متوسط تا شدید شده‌اند. شیمی کانی کلریت به دخالت فرآیندهای دگرسانی و تشکیل این کانی در دمای 330 تا 360 درجه سانتی‌گراد اشاره دارد. ترکیب همه داده‌ها گویای ماهیت آهکی قلیایی نوع I توده‌های نفوذی مورد بررسی است که در پهنه ساختاری فرورانش و در ارتباط با کرانه قاره‌ای فعال تشکیل شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Thermobarometry of intrusive masses in west of Taft using mineral chemistry data

نویسنده [English]

  • Javad Ghanei Ardakani
Department of Geology, Payame Noor University, Tehran, Iran
چکیده [English]

The study of granitoides bodeis in the west of Taft, is located in the middle part of the central Iran, indicates the presence of quartz, orthoclase, plagioclase minerals as main minerals and amphibole, biotite, sphene, zircon and apatite as secondary minerals. In these rocks, medium-grained to fine-grained, granophyric and myrmikite textures are observed. The data of mineral chemistry analysis show that calcic type amphiboles of magnesiohornblende to actinolite nature belonging to temperature 659-891 C, pressure 2.1- 4.9, and depth 4.4- 6 have been crystallized. However, feldspars are oligoclase to andesine type that belonging to 700-800 C, and biotites have been crystallized 700-750 C. The minerals chemistry of biotite was indicated to the mantle nature of the magma, which has suffered from moderate to severe crustal contamination during ascent. The mineral chemistry of chlorite refers to the involvement of alteration processes and the formation of this mineral at the temperature of 330 to 360 C. All of the data indicates to the calc-alkaline granitoides I type, which were formed in the structural zone of subduction and in connection with the active continental margin

کلیدواژه‌ها [English]

  • Mineral chemistry
  • granitoid bodies
  • calc-alkaline
  • westTaft
  • barometery
  1. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [DOI:10.1016/j.precamres.2017.12.037.]
  2. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [DOI:10.1016/j.precamres.2017.12.037.]
  3. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
  4. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
  5. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
  6. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
  7. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
  8. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
  9. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
  10. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
  11. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
  12. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
  13. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
  14. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
  15. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
  16. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
  17. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
  18. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
  19. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
  20. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
  21. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
  22. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
  23. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
  24. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
  25. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
  26. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
  27. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
  28. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
  29. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
  30. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
  31. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
  32. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
  33. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
  34. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
  35. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
  36. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
  37. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
  38. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
  39. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
  40. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
  41. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
  42. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
  43. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
  44. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
  45. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
  46. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
  47. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
  48. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
  49. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
  50. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
  51. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
  52. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
  53. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
  54. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
  55. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
  56. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
  57. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
  58. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
  59. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
  60. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
  61. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
  62. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
  63. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
  64. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
  65. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
  66. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
  67. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
  68. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
  69. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
  70. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
  71. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.
  72. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.
  73. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [DOI:10.1016/j.precamres.2017.12.037.]
  74. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [DOI:10.1016/j.precamres.2017.12.037.]
  75. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
  76. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
  77. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
  78. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
  79. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
  80. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
  81. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
  82. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
  83. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
  84. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
  85. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
  86. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
  87. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
  88. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
  89. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
  90. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
  91. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
  92. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
  93. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
  94. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
  95. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
  96. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
  97. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
  98. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
  99. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
  100. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
  101. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
  102. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
  103. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
  104. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
  105. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
  106. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
  107. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
  108. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
  109. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
  110. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
  111. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
  112. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
  113. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
  114. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
  115. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
  116. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
  117. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
  118. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
  119. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
  120. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
  121. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
  122. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
  123. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
  124. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
  125. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
  126. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
  127. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
  128. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
  129. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
  130. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
  131. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
  132. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
  133. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
  134. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
  135. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
  136. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
  137. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
  138. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
  139. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
  140. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
  141. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
  142. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
  143. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.
  144. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.