ساخت و بررسی برخی ویژگی‌های نانوکامپوزیت‌های نانومیله‌های دی‌اکسید تیتانیوم / اکسید گادولینیم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید چمران اهواز

چکیده

در این پژوهش، نانوکامپوزیت­های نانومیله­های دی­اکسید تیتانیوم / اکسید گادولینیم ساخته شده و برخی از ویژگی­های آن­ها بررسی گردید. نانومیله­های دی­اکسید تیتانیوم به روش ریزموج ساخته شدند و ویژگی­های ساختاری، ریختاری، اپتیکی و آب­گریزی-آب­دوستی آن­ها بررسی گردید. نانوکامپوزیت­هایی با نانومیله­های دی­اکسید تیتانیوم و مقادیر مختلف 5، 10، 15 و 20 درصد اکسید گادولینیم ساخته شد. ویژگی­های این نمونه­ها با پراش­سنج پرتوی ایکس، میکروسکوپ الکترونی روبشی، طیف­سنج پراکندگی انرژی پرتوی ایکس و طیف­سنج مرئی - فرابنفش بررسی شد. نتایج نشان دادند که نانومیله­های دی­اکسید تیتانیوم دارای فاز روتیل با ساختار چارگوشی و دارای طول میانگین حدود 32 نانومتر هستند. نمونه‌های لایه‌ای از نانومیله‌های دی‌اکسید تیتانیوم، اکسید گادولینیوم (Gd2O3) و همچنین نانوکامپوزیت‌های مختلف به­روش پوشش‌دهی چرخشی ساخته شد. زاویه تماس نمونه لایه‌ای از نانومیله‌های دی‌اکسید تیتانیوم حدود 44 درجه بوده که نشان دهنده آب­دوستی این نمونه است. نتایج همچنین نشان داد که نمونه نانوکامپوزیت نانومیله­های دی­اکسید تیتانیوم / اکسید گادولینیم آب­دوستی کمتری دارد. گاف انرژی اپتیکی نانومیله تیتانیوم دی­اکسید حدود 9/2 الکترون­ولت و برای نانوکامپوزیت­ها با درصدهای مختلف گادولینیم اکسید تقریباً ثابت به­دست آمد.    

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and investigation of some properties of titanium dioxide nanorods/gadolinium oxide nanocomposites

نویسندگان [English]

  • Dolatkhah
  • Zargarshoshtari
  • Farbod
چکیده [English]

The aim of this study was to fabricate nanocomposites of titanium dioxide nanorods/gadolinium oxide and to investigate some of their properties. So, in this research, titanium dioxide (TiO2) nanorods were fabricated by microwave methods. The properties of crystal structure, morphology, optical, hydrophilicity and hydrophobicity of the samples were investigated. Nanocomposites of  5, 10, 15 and 20 percent of gadolinium oxide (Gd2O3) were fabricated using titanium dioxide nanorods. The properties of the fabricated samples, such as crystal structure and morphology, were investigated by X-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy, respectively. The results of experiments showed that titanium dioxide nanorod have a rutile phase with tetragonal crystal structure. The contact angle and visible-ultraviolet spectroscopy of the samples were also studied. Layer samples were made from titanium dioxide nanorods, gadolinium oxide (Gd2O3) and also various nanocomposites by spin coating method. The contact angle of titanium dioxide nanorods was about 44 degrees, indicating the hydrophilicity of titanium dioxide nanorods. Also, the results showed that nanocomposites samples with TiO2 nanorods reduce the hydrophilicity. The optical gap of titanium dioxide nanorods was about 2.9 eV. The optical energy gap of nanocomposite samples with different percentages of gadolinium oxide was almost constant.

کلیدواژه‌ها [English]

  • titanium dioxide nanorods
  • nanocomposites
  • gadolinium oxide
  • hydrophilicity
  • microwave method
  • optical gap
  • contact angle
  1. [1] Li. Yan, J. Yan, W. Ding, Y. Chen, L. M. Pack, and T. Chen, "Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles", Mutagenesis 32 (1), 33-46 (2017). [DOI:10.1093/mutage/gew065]
  2. [1] Li. Yan, J. Yan, W. Ding, Y. Chen, L. M. Pack, and T. Chen, "Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles", Mutagenesis 32 (1), 33-46 (2017). [DOI:10.1093/mutage/gew065]
  3. [2] B. Daniel, "A Guide to the Elements, Rev. Edition (Stwertka, Albert)", (1999).
  4. [2] B. Daniel, "A Guide to the Elements, Rev. Edition (Stwertka, Albert)", (1999).
  5. [3] X. Xiao, K. Ouyang, R. Liu and J. Liang, "Anatase type titania nanotube arrays direct fabricated by anodization without annealing", Applied Surface Science 255 (6), 3659-3663 (2009). [DOI:10.1016/j.apsusc.2008.10.014]
  6. [3] X. Xiao, K. Ouyang, R. Liu and J. Liang, "Anatase type titania nanotube arrays direct fabricated by anodization without annealing", Applied Surface Science 255 (6), 3659-3663 (2009). [DOI:10.1016/j.apsusc.2008.10.014]
  7. [4] M. Kajbafvala, M.Farbod, A. M. Ghalambor, "Synthesis of TiO2 nanoparticles and doping of them with Lanthanides to improve the photocatalytic activity", M. S. Thesis, shahid chamran university, IR (2011).
  8. [4] M. Kajbafvala, M.Farbod, A. M. Ghalambor, "Synthesis of TiO2 nanoparticles and doping of them with Lanthanides to improve the photocatalytic activity", M. S. Thesis, shahid chamran university, IR (2011).
  9. [5] N. Yosefali, A. Reyhani, Z. Mortazavi, "Synthesis of silver doped TiO2 nanostructures and their characterization for photocatalystic applications", M. S. Thesis, Imam Khomeini International university, IR (2016).
  10. [5] N. Yosefali, A. Reyhani, Z. Mortazavi, "Synthesis of silver doped TiO2 nanostructures and their characterization for photocatalystic applications", M. S. Thesis, Imam Khomeini International university, IR (2016).
  11. [6] M. Khademolrasol, M.Farbod, M. Zargar, "The TiO2 Nanoparticles Synthesis and the Investigation of Their Photocatalytic Property", M. S. Thesis, shahid chamran university, IR (2009).
  12. [6] M. Khademolrasol, M.Farbod, M. Zargar, "The TiO2 Nanoparticles Synthesis and the Investigation of Their Photocatalytic Property", M. S. Thesis, shahid chamran university, IR (2009).
  13. [7] O, K, M. Tanaka, J. Takeda, Y. Kawazoe, "Nano-and micromaterials", vol 9, New York, NY Springer (2008).
  14. [7] O, K, M. Tanaka, J. Takeda, Y. Kawazoe, "Nano-and micromaterials", vol 9, New York, NY Springer (2008).
  15. [8] Edelstein S., Alan R. C., Cammaratra, "Nanomaterials: synthesis, properties and applications", CRC press (1998). [DOI:10.1201/9781482268591]
  16. [8] Edelstein S., Alan R. C., Cammaratra, "Nanomaterials: synthesis, properties and applications", CRC press (1998). [DOI:10.1201/9781482268591]
  17. [9] Jr. Poole, P. Charles, J. Frank, Owens, "Introduction to nanotechnology", John Wiley & Sons (2003).
  18. [9] Jr. Poole, P. Charles, J. Frank, Owens, "Introduction to nanotechnology", John Wiley & Sons (2003).
  19. [10] S. Cotton, "Lanthanide and actinide chemistry 2006", Wiley: Chichester, UK (2013). [DOI:10.1002/0470010088]
  20. [10] S. Cotton, "Lanthanide and actinide chemistry 2006", Wiley: Chichester, UK (2013). [DOI:10.1002/0470010088]
  21. [11] M. A. McDonald, K. L. Watkin, "Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles", Academic radiology 13 (4), 421-427 (2006). [DOI:10.1016/j.acra.2005.11.005]
  22. [11] M. A. McDonald, K. L. Watkin, "Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles", Academic radiology 13 (4), 421-427 (2006). [DOI:10.1016/j.acra.2005.11.005]
  23. [12] X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu, W. Shangguan, "Synthesis of titania nanotubes by microwave irradiation", Solid State Communications, 136, 513-517 (2005). [DOI:10.1016/j.ssc.2005.09.023]
  24. [12] X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu, W. Shangguan, "Synthesis of titania nanotubes by microwave irradiation", Solid State Communications, 136, 513-517 (2005). [DOI:10.1016/j.ssc.2005.09.023]
  25. [13] X. Zhao, J. Wang, X. Dong, X. Wang, G. Liu, W. Yu, L. Wang, "Impact of pH on Morphology and Electrochemical Performance of LiFePO4 as Cathode for Lithium-ion Batteries", Integrated Ferroelectrics, 164(1), 98-102 (2015). [DOI:10.1080/10584587.2015.1044878]
  26. [13] X. Zhao, J. Wang, X. Dong, X. Wang, G. Liu, W. Yu, L. Wang, "Impact of pH on Morphology and Electrochemical Performance of LiFePO4 as Cathode for Lithium-ion Batteries", Integrated Ferroelectrics, 164(1), 98-102 (2015). [DOI:10.1080/10584587.2015.1044878]
  27. [14] N. M. Ganesan1, N. Muthukumarasamy, R. Balasundaraprabhu, T. S. Senthil, "Effect of pH on the surface morphology and structural properties of TiO2 nanocrystals prepared by simple sol-gel method", Iranian Journal of Science & Technology, 38A(2), 187-191 (2014).
  28. [14] N. M. Ganesan1, N. Muthukumarasamy, R. Balasundaraprabhu, T. S. Senthil, "Effect of pH on the surface morphology and structural properties of TiO2 nanocrystals prepared by simple sol-gel method", Iranian Journal of Science & Technology, 38A(2), 187-191 (2014).
  29. [15] Y. S. Bekir, A. Al-Sharafi and A. Haider, "Self-Cleaning of Surfaces and Water Droplet Mobility", Cambridge, MA, USA: Elsevier, 45-98 (2019).
  30. [15] Y. S. Bekir, A. Al-Sharafi and A. Haider, "Self-Cleaning of Surfaces and Water Droplet Mobility", Cambridge, MA, USA: Elsevier, 45-98 (2019).
  31. [16] B. Azzedine, M. Chakaroun and A. Fischer, "1-Organic semiconductors", In Organic Lasers, Elsevier, 1-47 (2017). [DOI:10.1016/B978-1-78548-158-1.50001-8]
  32. [16] B. Azzedine, M. Chakaroun and A. Fischer, "1-Organic semiconductors", In Organic Lasers, Elsevier, 1-47 (2017). [DOI:10.1016/B978-1-78548-158-1.50001-8]
  33. [17] S. Wassila, N. Hfayedh, A. Megriche, M. Girtan and M. El Maaoui, "Hydrophilic/hydrophobic and optical properties of B2O3 doped TiO2 sol-gel thin films: Effect of B2O3 content, film thickness and surface roughness", M.Ch.Ph 215, 31-39 (2018). [DOI:10.1016/j.matchemphys.2018.03.080]
  34. [17] S. Wassila, N. Hfayedh, A. Megriche, M. Girtan and M. El Maaoui, "Hydrophilic/hydrophobic and optical properties of B2O3 doped TiO2 sol-gel thin films: Effect of B2O3 content, film thickness and surface roughness", M.Ch.Ph 215, 31-39 (2018). [DOI:10.1016/j.matchemphys.2018.03.080]
  35. [18] F. Jahantigh, M. Eskandari and M. B. Ghorayshi, "The effect of titanium dioxide nanoparticles on the mechanical properties of polycarbonate for use industry", scientific journal of nanomaterials 8 (27), 173-174 (1395).
  36. [18] F. Jahantigh, M. Eskandari and M. B. Ghorayshi, "The effect of titanium dioxide nanoparticles on the mechanical properties of polycarbonate for use industry", scientific journal of nanomaterials 8 (27), 173-174 (1395).