[1] Alavi M., “Tectonic map of Middle East, scale: 1:5000 000”, Tehran, Iran, G.S.I. one sheet (1991).
[2] Fath Elahi M., Khairkhah M., “Origin and location of tectonomagmatic volcanic rocks of Sabalan Quaternary”, Iranian Quaternary Quarterly (Scientific Research), Volume 1, Number 2 (1394) pp. 125-136.
[3] Dilek Y., Imamverdiyev N.A., Altunkaynak S., “Geochemistry and tectonics of Ceno-zoic volcanism in the lesser Caucasus (Azerbaijan) and the peri-Arabian region: col-lision induced mantle dynamics and its magmatic fingerprint”, Int. Geol. (2009) Rev. 143.
[4] Verdel C., Wernicke B.P., Hassanzadeh J., “A Paleogene extensional arc flare-up in Iran”, Tectonics, 30, Issue 3 (2011).
[5] Mason J.A., Jacobs P.M., Hanson P.R., Miao X.M., Goble R.J., “Sources and paleoclimatic significance of Holocene Bignell Loess”, central Great Plains, USA. Quaternary Research 60 (2003) 330–339.
[6] Didon J., Germain Y.M., “Le Sabalan, Volcan Plio-Quaternaire de l Azerbaidjan oriental (Iran): Etude geologiqueet petrographique de le difice et de son environment regional[Ph.D. thesis]”, Docteur du 3 eme cycle. Universit´e de Grenoble (1976).
[7] Galamghash J., Mousavi Z., Hassanzadeh J., Schmitt A.K., “Sabalan Volcano, Northwest Iran: Geochemistry and U—Pb zircon geochronology”. Geol. Soc. Amer. Meeting, (2013) A363-9.
[8] Deer W. A., Howie R. A., Zussman J., “An Introduction to rock – forming Minerals”, Longman, (1965) 528 p.
[9] Leake B. E., Woolley A. R., Birch W. C., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch I.I.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., “Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names”, Mineearl . Mag. 61 (1997) 295-321.
[10] Mevel C., “Metamorphism in oceanic layer 3. Gorringe Bank, Eastern Atlantic”, Contributions to Mineralogy and Petrology 100 (1988) 496-509.
[11] Leake B. E., “Nomenclature of amphiboles”, Mineral Mag 42 (1978) 533-563.
[12] Spear F. S., “An experimental study of hornblende stability and compositional variability in amphibolites”, Am. J. Sci. 281 (1981) 679-734.
[13] Nachit H., Ibhi A., Abia E. H., Ohoud M. B., “Discrimination between primary magmatic biotites”, reequilibrated biotites and neoformed biotites: Geomaterials (Mineralogy), Comptes Rendus, Geoscience, v. 337 (2005) p. 1415- 1420.
[14] Abdel-Rahan A. M., “Nature of biotites from alkaline, calc-alkaline”, and peraluminous magma. Journal of Pettology, 35(2) (1994) 525- 541.
[15] PatiñoDouce A.E., “Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability”, Chemical Geology. Volume 108, Issues 1–4 (1993) Pages 133-162.
[16] Brown E. H., “The crossite content of Ca – amphibole as a guide to pressure of metamorphism”, Journal of Petrology, v. 18 (1977) p. 53- 72.
[17] Haselton HT., Hovis GL., Hemingway BS., Robie RA., “Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na, K short-range order and implications for two-feldspar thermometry”, Am Mineral 68 (1983) 398-413.
[18] Seck H.A., “Der einflus des drucks auf diezuzammen-setzung alkalifeldespathie und plagioclase in system NaAlSi3o8-KalSi3o8-CaAlSio8-H2O”, Contributions to Mineralolgy and Petrology 31(1971) 67-86
[19] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al – in hornblende barometry”, American Mineralogist, v. 80 (1995) p. 549- 559.
[20] Schmidt M. W., “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer”, Contributions to Mineralogy and Petrology, v. 110 (1992) p. 304- 10.
[21] Brown E. H., “The crossite content of Ca – amphibole as a guide to pressure of metamorphism”, Journal of Petrology, v. 18 (1977) p. 53- 72.
[22] Moazzen M., Droop G. T. R., “Application of mineral thermometers and barometers to granitoid igneous rocks”, the Etive Complex, W Scotland. Mineralogy and Petrology 83 (2005) 27-53.
[23] Hammarstrom J. M., Zen E., “Aluminum in hornblende”, An empirical igneous geobarometer: American Mineralogist, v. 71, (1986) p. 1297- 1313.
[24] Ernst W. G., Liu J., “Experimental phase – equilibrium study of Al- and Ti- contents of calcic Amphibole in MORB – A semi quantitative thermobarometer”, American Mineralogist, v. 83, (1998) p. 952- 969.
[25] Nyman M. W., Tracy R. J., “Petrological evolution of amphibolite shear zones”, Cheyenne Belt, Southeastren Wyoming, USA. Journal of Metamorphic Geology, 11 (1993) 757-773.
[26] Hynes A., “A comparison of amphiboles from medium- to low- pressure metabasites”, Contributions to Mineralogy and Petrology, v. 81 (1982) p. 119- 125.
[27] Helz R. T., “Phase reactions of basalts in their melting rang at PH2O=5kb. Part II. Melt composition”, J. Petro. 17 (1973) 139-193.
[28] Holland T., Blundy J., “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry” Contributions to Mineralogy and Petrology, v.116, (1994) p. 433- 447.
[29] Henry D., Guidotti Ch., Thomson J., “Ti-saturation surface for low to medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms”, American Mineraligist, 90 (2005) 316- 328.
[30] Robert J. L., “Titanium solubility in synthetic phlogopite solid solutions”, Chemical Geology, v. 17, (1976) p. 213- 227.
[31] Tronnes R. G., Edgar A. D., Arima M., “A high pressure-high temperature study of TiO2 solubility in Mg-rich phlogopite: Implications to phlogopite chemistry”, Geochimica et Cosmochimica Acta, v. 49 (1985) p. 2323- 2329.
[32] Arima M., Edgar A. D., “Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin”, Contributions to Mineralogy and Petrology, v. 77 (1981) p. 288- 295.
[33] Abrecht J., Hewitt D. A., “Experimental evidence on the substitution of Ti in biotite”, American Mineralogist, v. 73 (1988) p. 1275- 1284.