Geochemistry and Mineralogy of Qopi Bauxitized Horizon in west of Miandoab, West-Azarbaidjan, Iran

Abstract

The Qopi bauxitic horizon is located west of Miandoab, in West-Azarbaidjan province, NW of Iran. It lies along the boundary of Ruteh (middle-upper Permian) and Elika (lower Triassic) Formations. This horizon includes four distinct lithologic facies such as (1) bauxitic iron ore, (2) ferruginous bauxite, (3) Fe-rich bauxite, and (4) Fe-rich clayey bauxite. Microscopic  examinations showed various textures including pelitomorphic, fluidal, colloform, pseudo-breccia, and pseudo-porphyry within the horizon, suggesting an authigenic origin. Based upon field evidence and geochemical data, the fine-grained diabase in the area may be the probable parent rock from which the bauxite layers developed. The results of calculations of mass changes showed that elements such as Na, K, Mg, P, Si, and Ca were depleted, and Fe, Al, and Ti were enriched during bauxitization processes. According to field observations, microscopic examinations, and geochemical investigations, Eh variations (from reducing to oxidizing) and suitable pH (6-8) of descending meteoric waters were the prime factors controlling the formation of Qopi bauxite layers. In addition, the enrichment pattern of immobile elements and field evidence indicate that the Qopi bauxitic horizon may be classified as Mediterranean karst bauxite

Keywords


]1[ عابدینی علی، بررسی زمین شناسی اقتصادی نهشته های بوکسیت – لاتریت غرب‌میاندوآب، رساله کارشناسی ارشد زمین شناسی اقتصادی دانشگاه تبریز ]1381 [.

[2] Bardossy G.Y., Karst Bauxites (bauxite deposits on carbonate rock, Elsevier Scientific, Amsterdam, [1982].

[3] Bardossy G.Y., Aleva G.Y.Y., Lateritic Bauxites, Akademia, Kiado Budapest, [1990].

[4] Boulange B., Les formation bauxitiques lateritiques de Cote d’ Irvore, Travaux et documents d’ ORSTOM, Paris, 175 [1984] 341.

[5] Dana D., Cornelis K., Cornelius H., Manual of mineralogy, John Wiley and Sons, [1985].

[6] Kretz R., Symbols for rock- forming minerals, American Mineralogist, 68 [1983] 277-279.

[7] MacLean W.H., Kranidiotis P., Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec, Economic Geology, 82 [1987] 951-962.

[8] MacLean W.H., Mass change calculations in altered rock series, Mineralium Deposita, 25 [1990] 44-49.

[9] MacLean W.H., Bonavia F.F., Sanna G., Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia, Mineralium Deposita, 32 [1997] 607-616.

[10] Mason B., Moore C.B., Principles of geochemistry, John Wiley&Sons [1982].

[11] Nia R., Geologische, geochemische Untersuchungen Zum problem der Boehmite- Diaspore Genese in griechischen Oberkeide- Bauxiten der Parnass- Kiado- Zone, Thesis Univ. of Hamburg [1968].

[12] Norton S.A., Laterite and bauxite formation, Econ. Geol., 68 [1973] 353-361.

[13] Ozlu N., Trace – element contents of “ Karst Bauxites ” and their parent rocks in the Mediterranean Belt, Mineralium Deposita, 18 [1983] 469-476.

[14] Rollinson H., Using geochemical data: evaluation, presentation, interpretation, Longman Scientific and Technical [1993].

[15] Schroll E., Sauer D., Beitrag zur geochemie von Titan, Chrom, Nikel, Cobalt, Vanadium und Molibdan in bauxitischen Gestemen und problem der stofflichen Herkunft des Aluminiums, Travaux de ICSOBA, Zagreb, 5 [1968] 83-96.

[16] Shaw D.M., Interpretation geochimique des elements en traces dans les roches cristallines, Masson et cie. Paris [1964].

[17] Valeton I., Bauxites, Elsevier, Amsterdam [1972].

[18] Valeton I., Biermann M., Rosenberg F., Genesis of nikel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks, Ore Geol Rev., 2 [1987] 359-404.