تعیین اندازه بلورک‌ها و چگالی در رفتگی‌ها در نمونه نانومتری CeO2به روش گشتاورهای مرتبه دوم و چهارم با استفاده از پراش نوترون

نویسندگان

دانشگاه علم و صنعت ایران

چکیده

پهن­شدگی خطوط پراش را می­توان برحسب اندازه بلورک­ها و چگالی دررفتگی­ها تفسیر کرد. در این مقاله، از داده­های پراش نوترون به­دست آمده از اکسید سریم استفاده، و ریزساختار نمونه نانومتری تعیین و گزارش شده است. نتایج به­دست آمده برای میانگین چگالی دررفتگی و میانگین اندازۀ سطحی بلورک­ها با استفاده از گشتاورهای مرتبه دوّم و چهارم با هم همخوانی ندارند. این ناهمخوانی دور از انتظار نیست زیرا محاسبات نظری و کارهای تجربی نشان داده­اند در صورتی که نتوان از پهن­شدگی ناشی از اندازۀ بلورک­ها چشم پوشید، نتایج حاصل از گشتاور مرتبه دوّم قابل اعتماد نبوده و باید از گشتاور مرتبه چهارم استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of particles size and dislocations density of nanoscale sample of CeO2 by second- and fourth-order restricted moments using neutron diffraction

چکیده [English]

Diffraction line broadening analysis has been proved to be an extremely powerful method to study the defect properties of crystalline materials, since different types of defects produce different types of diffraction line profiles. In other word, the distribution of intensity, especially in tails of line profile, strongly depends on the crystallite size and dislocation structures. In this paper, we have applied the second and fourth order restricted moments methods and analysed the neutron diffraction data collected on Ceria in terms of crystallite size and dislocation density. The values of dislocations density and crystallite size obtained from the second-order restricted moment do not agree with those obtained from the fourth-order restricted moment. This discrepancy is not unexpected when size broadening can not be neglected, the second-order restricted moment does not give correct values for microstructure parameters and therefore these parameters must be evaluated from the fourth-order restricted moment.

کلیدواژه‌ها [English]

  • Neutron diffraction
  • nanoscale sample
  • second-order restricted moment
  • fourth-order restricted moment
[1] Richard M., Ibberson William, I.F. David, “Neutron powder diffraction”, Chapter 5 of Structure determination form powder diffraction data IUCr monographphs on crystallography, Oxford scientific publications (2002).

[2] Bonneau L., Quentin P., "Microscopic calculations of potential energy surfaces: fission and fusion properties", Los Alamos National Laboratory, Theoretical Division, MS B283, Los Alamos, New Mexico.

[3] http://scripts.iucr.org, “Size-strain line-broadening analysis of the ceria round-robin sample”.

[4] Warren B.E., "X-Ray Diffraction", Reading Mass.:Addison-Wesley, (1969)

[5] Groma I., Szekely F., “Analysis of the asymptotic properties of X-ray line broadening caused by dislocations”, J. Appl. Cryst. 33, 1328(2000)

[6] A.J.C. Wilson, “On Variance as a Measure of Line Broadening in Diffractometry General Theory and Small Particle Size”, Proc. Phys. Soc.80 (1962) 286.

[7] A.J.C. Wilson, Nuovo Cimento “The Effects of Dislocations on X-ray Diffraction”. 1, 277 (1955).

[8] Langford J., “The variance and other measures of line broadening in powder diffractometry”, J. Appl. Cryst. 1, 48 (1968)

[9] Groma I., Ungar T., Wilkens M., “Asymmetric X-ray line broadening of palastically deformed crystals. I. Theory”, J Appl. Cryst. 21 (1988) 47.

[10] Borbely A., Groma I., "Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks", Appl. Phys. Lett 79(2001).

[11] Groma I., Ungar T., Wilkens M., “Asymmetric X-ray line broadening of palastically deformed crystals. II. Evaluation Procedure”, J Appl. Cryst. 22 (1989) 26.

[12] Ribarik G., "modeling of diffraction patterns based on microstructural properties", Ph.D. Thesis, Physics Doctorate School, Department of Materials Physics, (2008).

[13] Groma I., "X-ray line broadening due to an inhomogeneous dislocation distribution", Phys. Rev. B 57 7535 (1998).