Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and DTA/TG analysis methods

Abstract

Determination of  stability limits, mineralogical changes and  thermal reaction of serpentine minerals are very important for the  investigation of magmatism, mechanism and depth of  plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction. In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex (NOC) were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and DTA-TG analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550°C. Dehydration reactions on lizardite started at approximately between 100 to 150°C and dehydroxilation reactions started at approximately 550-690°C. As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite).  Crystallization of olivine (forsterite) will start at 600°C. This mineral is stable up to 700oC and then crystallization of enstatite will start at 700°C. During this dehydration and crystallization reaction, amorphous processes will start at 600°C and some amount water and silica will release.

Keywords


[1] Abu El-Rus M.A., Neumann E.R., Peters V., ''Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands)'', Evidence from mantle xenoliths; Lithos 89 (2006) 24-46.

[2] Cerny p., ''Comments on serpentinization and related metasomatism'', The American Mineralogist, 53 (1968) 1377-1385.

[3] Ohtani E., ''Water in the Mantle'', Elements 1 (2005) 25-30.

[4] Pawley A.R., Holloway J.R., ''Water Sources for Subduction Zone Volcanis'', New Experimental Constraints. Science 260 (1993) 664-667.

[5] Ulmer P., Trommsdorff V., "Serpentine stability to mantle depths and subduction-related magmatism", Science 268 (1995) 858-861.

[6] Wunder B., Schreyer W., "Antigorite: Highpressure stability in the system MgO-SiO2-H2O (MSH)", Lithos 41 (1997) 213-227

[7] Ruepke L., Phipps Morgan, J., Morra G., Regenauer-Lieb K., Connolly J., Hort M., ''Modeling the role of serpentinization and deserpentinization in bending and unbending slabs'', Geophysical Research Abstracts 5 (2003) 05421.

[8] Jung H., Dobrzhinetskaya L. F., Green H. W., ''Dehyration emborittlement of serpentine and its implications for earthquakes at depth'', Geophysical Research Abstracts 5 (2003) 12702.

[9] Sheikholeslami M.R., Bellon H., Emami H., Sabzehei M., Piqué A., ''Nouvelles données structurales et datations 40K–40Ar sur les roches métamorphiques de la région de Neyriz (zone de Sanandaj–Sirjan, Iran méridional). Leur intérêt dans le cadre du domaine néo-téthysien du Moyen-OrientNew structural and 40K–40Ar data for the metamorphic rocks in Neyriz area (Sanandaj–Sirjan Zone, Southern Iran). Their interest for an overview of the Neo-Tethyan domain in the Middle East'', Comptes Rendus Geosciences 335(2003) 981-991.

[10] RICOU L.E., ''Le croissant ophiolitique peri-arabe, une ceinture de nappes mises en place au Cretace superieur'', Rev. Geol. Phys. Geol. Dyn. 13/4 (1971) 327-350

[11] Ricou L.E., ''Evolution structurale des Zagrides: la region clef de Neyriz (Zagros Iranien)'', Memoir de la Societe Geologique de France, Nouvelle serie (40) 125 (1976) 140pp.

[12] Stocklin J., ''Structural correlation of the Alpine ranges between Iran and central Asia'', Societe Geologiquede France Memoire Hors-Serie, 8 (1977) 333–353.

[13] Sarkarinejad Kh., "Structures and microstructures related to steady-state mantle flow in the Neyriz ophiolite, Iran", Journal of Asian Earth Sciences 25/6 (2005) 859-881

[14] Babaie H. A., Ghazi M., Babaie A., Duncan R., Mahoney J., Hassanipak A.A., "New Ar–Ar age, isotopic, and geochemical data for basalts in the Neyriz ophiolite, Iran", Geophysical Research Abstracts, European Geophysical Society 5 (2003) 12899.

[15] Lanphere M.A., Pamić J., "40Ar/40Ar Ages and tectonic setting of ophiolite from the Neyriz area, southeast Zagros Range, Iran", Tectonophysics 96/3-4 (1983) 245-256.

[16] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24/4 (2005) 405-417.

[17] Sheikholeslami M.R., Piqué A., Mobayen P., Sabzehei M., Bellon H., Emami M.H., "Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran)", Journal of Asian Earth Sciences 31/4-6 (2008) 504-521.

[18] Babaie H.A., Ghazi A.M., Babaie A., La Tour T.E., Hassanipak A.A., "Geochemistry of arc volcanic rocks of the Zagros Crush Zone, Neyriz, Iran", Journal of Asian Earth Sciences 19/1-2 (2001) 61-76.

[19] NADIMI A., "Microstructural analysis of plastic deformation of upper mantle and shear zones of the Neyriz ophiolite, southeastern Iran", MSc. Thesis, Shiraz University, Shiraz, Iran (1999).

[20] NADIMI A., "Mantle flow patterns at the Neyriz paleospreading center, Iran", Earth and Planetary Science Letters 203 (2002) 93-104.

[21] Hall R., "Contact metamorphism by an ophiolite peridotite from Neyriz, Iran", Science, 208/4449 (1980) 1259–1262.

[22] O'Hanley D.S., "Serpentinites-Records of Tectonic and Petrological History", Oxford Monographs on Geology and Geophysics, 34 (1996) 277pp.

[23] Wicks F.J., Whittaker E.J.W., "Serpentine textures and serpentinization", Canadian Mineralogist 15 (1977) 459-488.

[24] O'Hanley D. S., ''Fault-Related phenomena associated with hydration and serpentine recrystallization during serpentinization'', Canadian Mineralogist 29 (1991) 21-35.

[25] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks", sixth Edition (1994) 318 pp.

[26] Frank M.R., Earnest D.J., Candela P.A., Wylie A.G., Wilmot M., Maglio S.J., "Experimental Study of the Thermal Decomposition of Lizardite up to 973 K", GSA Abstracts with Programs (2005).

[27] Berman R.G., Engi M., Greenwood H.J., Brown T. H., ''Derivation of internally consistent thermodynamic data by the technique of mathematical programming: a review with application to the system MgO-SiO2-H2O'', J. Petrol. 27 (1986) 1331-1364.

[28] Skelton A., Jakobsson M., ''Could peridotite hydration reactions have provided a contributory driving force for Cenozoic uplift and accelerated subsidence along the margins of the North Atlantic and Labrador Sea? Norwegian'', Journal of Geology 87 (2007) 241-248.

[29] Frost Ray L., Erickson Kristy L., "Thermal decomposition of synthetic hydrotalcites reevesite and pyroaurite", Journal of Thermal Analysis and Calorimetry 76/1 (2004) 217-225.

[30] Irifune T., Kuroda K., Funamori N., Uchida T., Takehito Y., Inoue T., Miyajima N., "Amorphization of serpentine at high pressure and high temperature", Science 272 (1996) 1468-1470.

[31] Fumagalli P., Poli S., ''Experimentally Determined Phase Relations in Hydrous Peridotites to 6.5 GPa and Their Consequences on the Dynamics of Subduction Zones'', Journal of Petrology 46 (2005) 555-578.

[32] Emami M.H., Sadegi M.M., Omrani S.J., "Magmatic map of Iran, Scale 1/1,000,000", Geological Survey of Iran, (1993).