Mineral chemistry of garnets in the Kaleybar alkaline igneous intrusion, NW Iran

Abstract

The Kaleybar alkaline igneous intrusion contains fine- to coarse-grained, anhedral to euhedral brown garnets. Most of the garnets are zoned. Generally, they occur in foid-bearing leucocratic rocks and the phenocrysts typically have analcime inclusions. According to mineral chemistry, the garnets of Kaleybar are Ti-andradites and melanites. The chemical zoning is characterized by a decrease in mole percent grossular, almandine, and spessartine and an increase in andradite from core to rim. On the basis of the present data, it can be concluded that the garnets in the Kaleybar intrusion are in the primary igneous phase that formed during the late magmatic stage and Ti-Si exchange in the tetrahedral site is the main substitution.

Keywords


[1] Deer W.A., Howie R.A., Zussman J., “An Introduction to the Rock Forming Minerals”, Second Longman Editions. Longman, London (1992) p. 696.

[2] Dahlquist J.A., Galindo C., Pankhurst R.J., Rapela C.W., Alasino P.H., Saavedra J., Fanning C.M., “Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids”, Lithos 95 (2007) 177–207.

[3] Gwalani L.G., Rock N.M.S., Ramasamy R., Griffin B.J., Mulai B.P., “Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western India”, Journal of Asian Earth Sciences 18 (2000) 163-176.

[4] Laverne C., “Unusual occurrence of aegirine-augite, fassaite and melanite in oceanic basalts (DSDP Hole 504B)”, Lithos 20 (1987) 135-151.

[5] باباخانی ع.، امینی آذر ر.، "گزارش عملیات اکتشافی بر روی توده نفلین سینیتی کلیبر به عنوان ماده اولیه تولید آلومینا، شیشه، سرامیک و سنگ‌های تزئینی و نما"، سازمان زمین‌شناسی کشور، شرکت توسعه علوم زمین (1367)، 75 صفحه.

[6] Droop G.T.R., “A general equatin for

eostimating Fe3+ in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria”, Mineralogical Magazine 51 (1987) 431–437.

[7] Dingwell D.B., Brearley M., “Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada”, Contribution to Mineralogy and Petrology 90 (1985) 29-35.

[8] Howie R.A., Woolley A.R., “The role of titanium and the effect of TiO2 on the cell-size, refractive index and specific gravity in the andradite-melanite-schorlomite series”, Mineralogical Magazine 36 (1968) 775-790.

[9] Gomes C.B., “Electron microprobe analysis of zoned melanites”, American Mineralogist 54 (1969) 1654-1661.

[10] Pearce T.H., “The analcite-bearing volcanic rocks of the Crowsnest Formation, Alberta”, Canadian Journal of Earth Science 7 (1970) 46-66.

[11] Huggins F.E., Virgo D., Huckenholz H.G., “Titanium-containing silicate garnets. I. The distribution of A1, Fe3+, and Ti4+ between octahedral and tetrahedral sites”, American Mineralogist 62 (1977a) 475-490.

[12] Huggins F.E., Virgo D., Huckenholz H.G., “Titanium-containing silicate garnets. II. The

crystal chemistry of melanites and schorlomites”, American Mineralogist 62 (1977 b) 646-665.

[13] Isaacs T., “Titanium substituted in andradites”, Chemical Geology 3 (1968) 219-222.

[14] Schwartz K.B., Nolet D.A., Burns R.G., “Mossbauer spectroscopy and crystal chemistry of natural Ti- Fe garnets”, American Mineralogist 65 (1980) 142-153.

[15] Miller C.F., Stoddard E.F., “The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman Piute Range, California”, Journal of Geology 89 (1981) 233–246.

[16] Einaudi M.T., Burt D.M., “Introduction terminology, classification and composition of skarn deposits”, Economic Geology 77 (1982) 745-754.

[17] Kretz R., “Symbols for rock-forming minerals”, American Mineralogist 68 (1983) 277–279.