Comparison of chemical composition of tourmaline in tin and tungsten- bearing quartz- tourmaline veins (Shah-kuh area, east of Iran and Nezamabad area, west of Iran)

Abstract

In Iran, the most important tin and tungsten mineralization has occurred in Shah-Kuh granitoid pluton (Lut Block, east of Iran), and Nezamabad area (Boroujerd granitoid complex, west of Iran), respectively. Both mineralizations are mainly accompanied by existence of quartz- tourmaline veins. Nezamabad veins- type tourmalines have dravite composition and have been formed in hydrothermal condition on the basis of the following reasons: having more Mg than Fe, fine scale zoning,  having  low fluorine amount, low X-site vacancy, low Al amount, low Fe/(Fe+Mg) ratio, tendency away from alkali- and proton-deficient tourmaline and lack of negative correlation between Fe and Mg. Falling their composition in the metapelites and metapsammite zone reveals that the required forming fluids might be originated from host metamorphosed sedimentary rocks of the regions. Quartz-tourmaline veins from Shah- Kuh have been injected into main pluton and sedimentary rocks of Shemshak Formation. Vein- type tourmalines of the sedimentary rocks, have the same hydrothermal properties as Nezamabad tourmaines. Despite of having mostly schorl composition and originating from magmatic fluids, vein- type tourmalines of the granitic pluton represent hydrothermal nature as well.

Keywords


[1] Foit F.F.Jr., Rosenberg P.E., “Coupled substitutions in the tourmaline group”:Contr. Mineralogy Petrology, 62 (1977) 109-127.

[2] Hawthorne F.C., Henry D.J., “Classification of the minerals of the tourmaline group”. European Journal of Mineralogy 11 (2) (1999) 201-215.

[3] Slack J.F., “Tourmaline associations with hydrothermal ore-deposits”. In: Grew, E.S.,

Anovitz, L.M. Eds., Boron: mineralogy, petrology and geochemistry. Rev. Mineral., 33, Mineral. Soc. Amer. (1996) 559–643.

[4] Henry D.J., Dutrow B.L., “Metamorphic tourmaline and its petrologic applications”. In: Grew, E.S., Anovitz, L.M. Eds., Boron: mineralogy, petrology and geochemistry. Rev. Mineral., 33, Mineral. Soc. Amer., (1996), 503–557.

[5] Jiang S.Y., Palmer M.R., Li Y.H., Xue C.-J., “Chemical compositions of tourmaline in the Yindongzi-Tongmugou Pb-Zn deposits, Qinling,China”: hnplieations for hydrothermal ore-forming processes: MineraliumDeposita, 30 (1995) 225-234.

[6] Sinclair W.D., Richardson J.M., “Quartz-tourmaline orbicules in the seagull batholith, Yukon Territory”. Can. Minera. 30, (1992), 923-935.

[7] London D., Manning D.A.C., “Chemical Variation and Significance of tourmaline from southwest England”. Economic Geology 90, (1995), 495-519.

[8] Williamson B.J., Spratt J., Adams J.T., Tindle A.G., Stanley C.J, “Geochemical constraints from tourmaline hydrothermal overgrowths on the evolution of mineralising fluids in southwestEngland”. J. Petrol. 41 (2000) 1439–1453.

[9] Berberian m., King G.C.P., “Towards a palegeography and tectonic evolution of Iran”. Canadian Journal of Earth Sciences 18 (1981) 210-265.

]10[ اسماعیلی د.، "پترولوژی و ژئوکرونولوژی توده گرانیتی شاهکوه (جنوب بیرجند) با نگرش ویژه به کانه‌زایی قلع"، رساله دوره دکتری، دانشکده علوم، دانشگاه تربیت مدرس (1380).

[11] Esmaeily D., Bellon H., Valizadeh M.V., “Isotopic chronology and trace elements eochemistry of the Shah-Kuh granite, Eastern Iran”. The International Earth Sciences colloquium on the Aegeean region (IESCA). Abstract book, OCTOBER 4-7, Izmir, Turkey, (2005).

[12] Ahmadi-Khalaji A., Esmaeily D., Valizadeh M.V., Rahimpour-Bonab H., “Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone”, Western Iran, Journal of Asian earth Sciences 29 (2007) 859-877.

]13[ احمدی خلجی ا. "پترولوژی توده گرانیتوئیدی بروجرد، رساله دکتری، دانشکده زمین‌شناسی"، پردیس علوم، دانشگاه تهران، (1385)، 190 صفحه.

]14[ حق نظر م.، "پتروژنز وکانه زایی تنگستن در بخش جنوب شرقی کمپلکس گرانیتی بروجرد"، پایان‌نامه دوره کارشناسی ارشد، دانشکده علوم، دانشگاه تهران (1386.(

[15] Trumbull R.B., Chaussidon M., “Chemical and boron isotopic composition of megmatic and hydrothermal tourmalines from the Sinceni granite-pegmaite system in Swaziland”. Chemical Geology 153 (1999) 125-137.

[16] Torres-Ruiz J., Pesquera A., Gil-Crespo P.P., Vellila N., “Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain)”. Cemical Geology 197 (2003) 55-86.

[17] Manning D.A.C., “Chemical and morphological variation in tourmalines from the Hub Kapong batholith of Peninsular Thailand”. Mineralogical Magazine 45 (1982) 139-147.

[18] Pesquera A., Velasco F., “Mineralogy, geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Cinco Villas massif (western Pyrenees, Spain)”. Contrib. Mineral. Petrol. 129 (1997) 53– 74.

[19] Cavarretta G., Puxeddu M., “Schorl-Dravite-Ferridravite Tourmalines Deposited by Hydrothermal Magmatic Fluids during Early Evolution of the Larderclio Geothermal Field, Italy”. Economic Geology 85 (1990) 1236-1251.

[20] Sinclair W.D., Richardson J.M., “Quartz-tourmaline orbicules in the seagull batholith, Yukon Territory”. Can. Minera. 30 (1992) 923-935.

[21] Henry D.J., Guidotti Ch.V., “Tourmaline as petrogenetic indicator mineral: an example from staurolite-grade metapelites of NW Mains”. Am. Mineral. 70 (1985) 1-15.

[22] Weisbrod A., Polak C., Roy D., “Experimental study of tourmaline solubility in the system Na–Mg–Al–Si–B–O÷H. Applications to the boron content of natural hydrothermal fluids and the tourmalinization process”. Volume of Abstracts, International Symposium Experimental Mineralogy and Geochemistry, Nancy, (1986) 140–141.

[23] Pirajno F., Smithies R.H., “The FeO/(FeO+MgO) ratio of tourmaline:a useful indicator of spatial variations in granite-related hydrothermal mineral deposits”. Journal of Geochemical Explorations 42 (1992) 371-381.

[24] Jiang Sh. Y., Palmer M.R., Yeats Ch.J., “Chemical and boron isotopic composition of tourmaline from the Archean Big Bell and Mount Gibson gold deposite, Murchison Provinece, Yilgarn Craton, Western Australia”. Chemical Geology 188 (2002) 229-247.