کانی شناسی سطحی خاک‌های سولفاته اسیدی ساحلی، در ناحیه شهری پینجارا، جنوب غربی استرالیا

نویسنده

دانشگاه گلستان

چکیده

خاک‌های سولفاته اسیدی در استرالیا عموما در مناطق ساحلی قرار دارند. یکی از بزرگترین تهدیدات در محیط ساحلی بهم خوردگی خاک‌های سولفاته اسیدی در اثر توسعه شهری است، که منجر به اسیدی شدن گسترده زمین‌ها، نهرها و در نتیجه خسارت‌های اقتصادی در همان مکان یا در مناطق همجوار می شود. نمونه‌برداری سطحی از اشکال زمین مختلف در منطقه مورد مطالعه و نتایج آزمایش‌های XRD ،  SEMو VNIR بیانگر تغییرات ریخت‌شناسی و کانی‌‌های سطحی در مناطق تحت تأثیر ناشی از فرآیند هوازدگی اکسایشی سولفیدی است. در طی فصل خشک، کانی‌شناسی منطقه متاثر از نمک با هالیت، ژیپس، باریت و به‌ویژه پوسته‌های اکسی هیدروکسیدهای آهن (فری هیدریت و شورتمانیت) مشخص می‌شود. هوازدگی اکسایشی جاروسیت بااکسایش سریع Fe2+می‌تواند سبب تشکیل اکسی و هیدروکسیدها آهن و اسید گردد. طیف انعکاسی مرئی - مادون قرمز نزدیک (VNIR) از منطقه متاثر از نمک و افق خاک‌های سولفاته اسیدی، به دلیل جذب نوارهای اکسیدی و هیدروکسیدهای آهن، اختلاف طیفی مشخصی را در محدوده VNIR نشان می‌دهد. این اختلاف طیفی می‌تواند برای نقشه‌برداری از بهم خوردگی خاک‌های سولفاته اسیدی ساحلی در اثر شهرسازی در مقیاس ناحیه‌ای از طریق روش‌های دورسنجی چند طیفی و فوق طیفی در ناحیه پینجارا استفاده گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Surfacial mineralogy of coastal acid sulfate soils in urbanization area of Pinjarra, Western Australia

چکیده [English]

Acid sulfate soils in Western Australia commonly occur in coastal regions. One of the greatest threats to coastal environment is the disturbance of acid sulfate soils due to urban development which can lead to widespread acidification of lands and streams and subsequent economic losses onsite or in adjacent areas. Surface sampling from different landforms of the study area and analytical results of XRD, SEM and VNIR indicate that morphological and surfacial minerals variations, due to oxidative sulfide weathering processes in affected landscape. In dry season, the surface mineralogy of salt affected zone is dominated by halite, gypsum, barite and importantly, iron oxyhydroxides crusts (ferrihydrite, schwertmannite). The oxidative weathering of the jarosite with rapid oxidation of Fe2+, can generate iron oxyhydroxides and acid. The visible near infra-red (VNIR) reflectance spectra of the surface minerals from salt affected zone and acid sulfate soils horizon, showed spectral differences expressed in the VNIR region due to absorption bands of iron oxides and hydroxides. The spectral difference can be utilized for regional scale mapping of coastal acid sulfate soils disturbance due to urbanization in Pinjarra area via hyperspectral and multispectral remote sensing.

کلیدواژه‌ها [English]

  • Coastal acid sulfate soils. Surface mineralogy
  • Urbanization
  • Southwestern
[1] Dent D.L., Pons L.J.,"A world perspective on acid sulfate soils". Geoderma, 67(1995): 263-276.

[2] Col A., Johnston P., Watling K., "acid sulfate soils: An Important Coastal Water Quality Issue". Coast to Coast (2002) 5-8.

[3]Fitzpatrick R.W., "Inland acid sulfate soils: A big growth area". In 5th International Acid Sulfate Soils Conference, Tweed Heads, NSW (Book of Extended Abstracts) (2002) 21-23.

[4] Raghimi M., "Properties of soils affected by saline and acid seeps West Dale, Southern WA", In: Roach, I.C. CRC. LEME Australia. ( 2003) 328-331.

[5] Harries J., "Acid mine drainage in Australia: its extent and failure liability". Supervising Scientist, Report 125(1997) 48p.

[6] Jones D., Chapman B.M., "Wetland to Treat AMD - Facts and Fallacies". In Proc. Second Australian Acid Mine drainage workshop, Carters Towers Queensland. 28-31. March, 1995. Australian Centre for Minesite Rehabilitation Research, Brisbane, Australia. Eds. N.J. Grundon & L.C. Bell. (1995) 127-145.

[7] National Working Party on Acid Sulfate Soils, (NWPASS)., "National Strategy for the Management of Coastal Acid Sulfate Soils". NSW Agriculture, Wollongbar NSW, (2000) 39.

[8] Appleyard S., Wong S., Ralston A., Angeloni J., Watkins R., "Groundwater acidity and arsenic contamination caused by urban development on acid sulfate soils in Perth, Western Australia", Abstracts of the 5th International Acid Sulfate Soil Conference, Sustainable Management of Acid Sulfate Soils, August 25th –30thTweed Heads, NSW, Australia, 2002.

[9] Sammut J., White I., Melville M.D., "Acidification of an estuarine tributary in eastern Australia due to the drainage of acid sulfate soils." Marine and Freshwater Research, 47(1996)669-684.

[10] Stone Y., Ahern C.R., Blunden B., "Acid Sulfate Soils Manual". Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia, (1998) 26p.

[11] Hodgkin E. P., Birch P. D., Black R. E., Humphries R. B., "The Peel-Haney Estuarine system study". Dept Conserv. & Envir. Rept. 9 (l980).

[12] Mc Arthur M. W., Betternay E., "The development and distribution of soils of the Swan Coastal Plain, Western Australia." CSIRO Soil Publ. I 6(1960)55

[13] Gentilli J., "Australian Climatic Patterns". Nelson Academic Press, Melbourne. (1972)285p.

[14] Bureau of Meteorology, "Climatic Average Western Australia". Aug. Gov. Publ Serv., Canberra, (1975) 82p.

[15] Black R. E., Rosher J. E., "The Peel Inlet and Harvey- Estuary system". Hydrology and Meteorology Dept. Conserv. & Envir. Bull. 89 (l980) 72p.

[16] Cudahy T., Ramanidou E., "Measurement of the hematite: goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits, WA. Australia". Journal of Earth Sciences, (1997) 411-420.

[17] Crowley J. K., Williams D. E., Hammarstrom J.M., I-Ming C., Mars J.C., "Spectral reflectance properties (0.4-2.5 m) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate –hydrate minerals associated with sulphide-bearing mine wastes". Geochemistry: Exploration, Environments and Analysis, 3 (1993) 219-228.

[18] Rabenhorst M. C., Fanning D. S., Burch S. N., "Acid sulfate soils, Formation". In: Encylopedia of SoiI Science; Lal, R., Ed.; Marcel Dekker: New York, (2001) 14-18.

[19] Gagliano W.B., Bigham J.M., "Acid mine drainage". In: Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, (2001) 1- 4.

[20] Fanning D. S., Rendenhors M., Bigman J. M. "Colors of acid sulfate soils".In: Bigman J M and Ciolkosz E J (Eds), Soil color. Soil Science Society of America Special Publ. No. 31.Madison,

Wisconsin: Soil Science Society of America (1993) 91-108.

[21] Fanning D.S., Fanning M.C., "Soil Morphology, Genesis and Classification". New York: John Wiley & Sons (1989) 284p.

[22] Nordstrom D.K., "Aqueous pyrite oxidation and the consequent formation of secondary iron minerals". In: Acid Sulfate Weathering; Kittrick, J.A., Fanning. D.S., Hossner, L.S., Eds.; Soil Science Society of America: Madison, WI, (1982) 37-57.

[23] van Breeman N., "Genesis, Morphology, and classification of acid sulfate soils in coastal plains". In: Acid Sulfate Weatheing; Kittrick, J.A., Fanning, D.S., Hossner, L.R., Eds.; Soil Sci. Soc. Am. Spec. Pub. No. 10: Madison, WI, (1982) 95-108.

[24] Ritsema C.J., van Mensvoort M.E.F., Dent D.L., Tan Y., van den Bosch H., van Wijk A.L.M., "Acid sulfate soils". In: Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, (1999) G12l-G154.

[25] Fitzpatrick R.W., Fritsch E., Self P.G., "Interpretation of soil features produced by ancient and modern processes in degraded landscapes: Development of saline sulfidic features in non-tidal seepage areas". Geoderma 69(1996) 1-29

[26] Swayze G. A., Smith K. M., Clark R. N. , Sutley S. J., Pearson R. M., Vance J. S., Hageman P. L., Briggs P. H., Meier A. L., Singleton M. J., Roth S., "Using imaging spectroscopy to map acidic mine waste. Environmental Science and Technology", 34(2000) 47-54.

[27] Bigham J.M., Fitzpatrick R.W., Schulze D., "Iron Oxides: Soil Mineralogy with Environmental Applications". In: J. B. Dixon & D. G. Schulze (Eds.), Soil Science Society of America Special Publications. Madison, Wisconsin, USA (2001) 323-366).

[28] Manceau A., Marcus M. A., Tamura N., "Quantitative speciation of heavy metals in soils and sediments by Synchrotron X-ray Techniques". (In: P.A. Fenter, M. L. Rivers, N. C. Sturchio & S. R. Sutton (Eds.), Applications of synchrotron radiation in low-temperature geochemistry and environmental science. (2002) 341-428