دولومیتی شدن و کانی‌زایی تبخیری‌های سازند ساچون در برش الگو (جنوب شرق شیراز)

نویسندگان

دانشگاه فردوسی مشهد

چکیده

سازند ساچون (پالئوسن-ائوسن پایینی) متشکل از کربنات­ها و تبخیری­هایی است که در شرایط دریایی کم عمق و ساحلی سبخا نهشته شده­اند. سازند ساچون در ناحیه مورد بررسی از سه بخش تبخیری زیرین، سنگ آهک‌ بیوکلاستی میانی و تبخیری بالایی تشکیل شده است. واحد تبخیری زیرین و بالایی بیشتر از ژیپس­های ثانویه حاصل از دیاژنز انیدریت- ژیپس تشکیل شده است. ژیپس­های ثانویه بیشتر دارای بافت آلاباستری و پورفیروبلاستی به همراه آثار باقیمانده از بلورهای انیدریت هستند. بررسی سنگ­شناختی نمونه­های بخش میانی سازند ساچون در این منطقه نشان می­دهد که مهم­ترین فرایندهای تاثیر گذار، دولومیتی شدن و کانی­زایی تبخیری است. بر مبنای بررسی­های سنگ­شناختی و ژئوشیمیائی چهار نوع دولومیت اولیه تا مراحل دفنی کم عمق شامل دولومیت خیلی ریز تا ریز (نوع یک)، نئومورفیک (نوع دوم)، لوزی رخ­های شکل­دار و مسطح در اندازه ریز تا متوسط (نوع سوم) و دولومیت پر کننده حفره­ها و شکستگی­ها (نوع چهارم) از یکدیگر تفکیک شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Dolomitization and evaporate mineralization of Sachun Formation at type locality (SE Shiraz)

چکیده [English]

The Sachun Formation (Paleocene-Lower Eocene) is mainly composed of carbonates and evaporates that were deposited in shallow-marine evaporitic mudflat environments. The Sachun Formation in the study area has been divided into three units including: lower evaporate; middle bioclastic limestone and upper evaporate. It is mainly composed of diagenetic gypsum, which originated from dehydration of anhydrite precursor. This gypsum in the Sachun Formation generally displays alabastrine and porphyroblastic textures with corroded anhydrite relics. Petrological studies reveal that the most important diagenetic processes affected the middle Part of the Sachun Formation are dolomitization and evaporate mineralization. Four types of dolomite, ranging from early to burial diagenetic environments, were identified. These are including very fine-to-fine crystalline (D1), neomorphic dolomite (D2), fine-to-medium crystalline euhedral to subhedral dolomite (D3) and pore- and fracture-filling dolomite (D4).

کلیدواژه‌ها [English]

  • gypsum
  • anhydrite
  • alabastrine
  • porphyroblastic
  • dolomite
  • Sachun Formation
[2] Dickson J.A.D., "Carbonate identification and genesis as revealed by staining. Journal Sedimentary Petroleum", 1966, 36: p. 491-505.

[3] Hood S.D., Nelson C. S., Kamp P.J., "Burial dolomitization in a non-tropical carbonate petroleum reservoir: the Oligocene Tikorangi Formation", Taranaki Basin, New Zealand, Sedimentary Geology, 2004. 172: p. 117-138.

[4] Mazzullo S.J., "Organogenic dolomitization in pritidal to deep sea sediments. Journal of Sedimentary Research", 2000, 70: p. 10-23.

[5] Sibley D.F., Greeg J.M., "Classification of dolomite rock Textures. Journal of Sedimentary Petroleum", 1987, 57: p. 967-975.

[6] Al-Aasm I.S., "Chemical and Isotopic constrains for recystallization of Sedimentary Dolomites from the West Canada Sedimentary basin" Aquatic Geochemistry, 2000, 6: p. 227-248.

[7] Adabi M.H., "Petrography and geochemical criteria for recognition of unaltered cold water and diagenetically altered neomorphic dolomite. Western Tasmania", Australia, 16th AGC, 2002: p. 350.

[8] Mahboubi A., Moussavi-Harami R., Brenner R.L., Gonzalez L.A., "Diagenetic history of late Paleocene potential carbonate Reservoir Rocks", Kopet-Dagh basin, NE Iran, . Journal of petroleum Geology, 2002, 25: p. 465-484.

[9] Mahboubi A., Moussavi-Harami R., Yahya-Sheibani V., Najafi M., Gonzalez L., "Petrography and Geochemical Evidence for Paragenetic Sequence Interpretation of the Lower Cretaceous Limestone in the Eastern Binalood Mountain Range", NE Iran. Iranian international Journal of Science, 2004. 5 (2): p. 181-201.

[10] Sass E., Bein A., "Dolomites and salinity: a comparative geochemical study. In: Shukla, V. and Baker", P.A. (eds.): Sedimentology and geochemistry of dolostones. Economic Paleontologists and Mineralogists, Special Publication, 1988, 43: p. 223-233.

[11] Rao C.P., "Elemental composition of marine calcite from modern temperate shelf brachiopods", bryozoans and bulk carbonates, eastern Tasmania, Australia. Carbonates and Evaporate, 1996 11(1-18).

[12] Allan j.R., Wiggins W.D., "Dolomite reservoir: geochemical techniques for evaluating origin and distribution". American Association of Petroleum Geologists Containing Education Course Notes Series, 1993, 36: p. 136.

[13] Al-Assam I.S., Pakard J. J., "Stabilization of early-formed dolomite", relate of divergence from two Mississipian dolomites. Sedimentary Geology, 2000, 131: p. 97-108.

[14] Tuker M.E., Wright V.P., "Carbonate Sedimentology. 1990: Black-Wells", Oxford. 482.

[15] Rao C.P., Jayawardane M.P.J., "Major minerals, elemental and isotopic composition in modern temperate shelf carbonates", eastern tasmania, Australia: Implications for the occurrence of extensive ancient non-tropical carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1994, 107: p. 49-63.

[16] Rao C.P., Adabi M.H., "Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool", temperate carbonates, western Tasmania, Australia: Mar. Geology, 1993. 103: p. 249-272.

[17] Vizer J., "Depositional and diagenetic history of limestone, in Isotopic signatures and sedimentary records N. Clauer and S. Chaudhuri", Editors. 1992, Springer Berlin / Heidelberg. p. 13-48.

[18] Gundogana, I., Onalb, M., and Depc, T., Sedimentology, petrography and diagenesis of Eocene-Oligocene evaporates: the Tuzhisar Formation, SW Sivas Basin, Turkey.Journal of Asian Earth Sciences, 2005, 25 p. 791-803.

[19] Alsharhan, A.S., and Kendall, C.G.ST.C., Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues Earth Science Review, 2003. 61: p. 191-243.

[20] Alssaran, N.A., Origin and geochemical reaction path of sabkha brine: Sabkha Jayb Uwayyid, eastern Saudi Arabia Arabian Journal of Geosciences, 2008. 1: p. 63-74.

[21] Warren, J., Evaporate, their evolution and economics. 1999: Black-Well Science Publ. 438.

[22] Rubio, E.S., Saanchez-Moral, S., Canaaveras, J.C., Calvo, J.P., and Rouchy, J.M., , Calcitization of Mg-Ca carbonate and Ca sulphate deposits in a continental Tertiary basin (Calatayud Basin, NE Spain).Sedimentary Geology, 2001. 140: p. 123-142.

[23] Playa, E., and Gimeno, D., Evaporate deposition and coeval volcanism in the Fortuna Basin (Neogene, Murcia, Spain) Sedimentary Geology, 2006. 188-189(205-218).

[24] Testa, G., and Lugli, S.,, Gypsum-anhydrite transformations in Messinian evaporates of central Tuscany (Italy). Sedimentary Geology, 2000, 130: p. 249-268.

[25] Orszag-Sperber F., Plaziat J.C., Baltzer F., Purser B.H., "Gypsum salina-coral reef relationships during the Last Interglacial (Marine Isotopic Stage 5e) on the Egyptian Red Sea coast: a Quaternary analogue for Neogene marginal evaporates", Sedimentary Geology, 2001. 140: p. 61-85.

[26] Kasprzyk A., "Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporate basin of the Carpathian Fore deep", southern Poland. Sedimentary Geology, 2003, 158: p. 167-194.

[27] El Khoriby E.M., "Origin of the gypsum-rich silica nodules", Moghra Formation, Northwest Qattara depression, Western Desert, Egypt. Sedimentary Geology, 2005, 177: p. 41-55.

[28] Lucia F.J., "Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization". American Association of Petroleum Geologists Bulletin, 1995, 79, no. 9: p. 1275-1300.