شواهد سنگ‌شناختی و ژئوشیمیایی رستیت در گرانیت آناتکسی شیرکوه، جنوب غرب یزد

نویسندگان

1 دانشگاه صنعتی شاهرود

2 دانشگاه تهران

چکیده

باتولیت گرانیتوئیدی نوع S شیرکوه یزد از سه واحد اصلی گرانودیوریت، مونزوگرانیت و لوکوگرانیت تشکیل شده است.  جدایش کانی­های رستیتی از مذاب ابتدایی که با تبلور جدایشی ادامه یافته است از مهم­ترین عوامل تنوع ترکیبی مشاهده شده در باتولیت محسوب می‌شود. انبوهه­هایی از بیوتیت­های کوچک با محتوای Xmg بالاتر، در مقایسه با بیوتیت‌های ورقه‌ای میزبان، برونبوم­های سورمیکاسه؛ مجموعه­ی کانیایی بیوتیت ± سیلیمانیت؛ کردیریت با محتوای بسیار پایینwt%) Na2O ٥/٠> (و مراکز یکنواخت و کلسیک پلاژیوکلاز از مهم­ترین رستیت­های شناخته شده در بخش­های مافیک‌تر گرانیت شیرکوهند. به علاوه زیرکن، آپاتیت و مونازیت نیز که به­صورت ادخال در بیوتیت یافت شده‌اند، می‌توانند به­عنوان رستیت در نظر گرفته ‌شوند. شواهد ژئوشیمیایی نیز همانند بررسی­های سنگ­شناختی حضور این کانی­های رستیتی را تایید می‌کند. بر اساس این شواهد به نظر می‌رسد گرانیت شیرکوه از آناتکسی پوسته­ی بالایی و اصولاً از طریق واکنش­های شکست بیوتیت تشکیل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Petrographic evidences and geochemical criteria of restite in the Shir-kuh anatectic granite, SW Yazd

چکیده [English]

The S-type granitoidic batholith of Shir-Kuh consists of three main granodioritic, monzogranitic and leucogranitic units. The separation of restite crystals from the primary melt, followed by the fractional crystallization, appears to have been an effective differentiation process in the batholith. Small biotite assemblages with higher XMg relative to host flaky biotites, surmicaceous enclaves, the biotite cored by sillimanite, the calcic cores of plagioclase, refractory metasedimentary enclaves and cordierite containing less than 0.5wt% Na2O are the main putative restites which are widespread in more mafic rocks of the batholith. In addition, inherited zircons, monazite and apatite, which are enclosed in biotite, would be considered as restite. Geochemical criteria emphasis the petrographic evidences. Accordingly, the anatexis of upper crust is likely to have been mainly controlled by biotite breakdown.

کلیدواژه‌ها [English]

  • restite
  • anatexis
  • S-type granite
  • Geochemistry
  • Shir-Kuh
[1] Chappell B.W., White A.J.R., Wyborn D., "The importance of residual source material (restite) in granite petrogenesis", J. Petrol. 28 (1987) 1111-1138.

[2] Barbero L., Villaseca C., "The Layos Granite. Hercynian complex of Toledo (Spain): An example of parautochthonous restite-rich granite in a granulitic area", Trans. R. Sot. Edinburgh Earth Sci. 83 (1992) 127-138.

[3] Wall V.J., Clemens J.D., Clarke D.B., "Models for granitoid evolution and source compositions", J. Geol. 95 (1987) 731-749.

[4] Clemens J.D., "The importance of residual source material (restite) in granite petrogenesis: A comment", I. Petrol. 30 (1989) 1313-1316.

[5] Bateman R., "The Center Pond pluton: The restite of the story (phase separation and melt evolution in granitoid genesis)", Comment. Am. J. Sci. 288 (1988) 282-287.

[6] Barbero L., Villaseca C., Rogers G., Brown P.E., "Geochemical and isotopic disequilibrium in crustal melting: An insight from the anatectic granitoids from Toledo, Spain", J. Geophys. Res. Solid Earth 100 (1995) 15745- 15765.

[7] Chappell B.W., White A.J.R., "Restite enclaves and the restite model". In: Didier, J. Barbarin, B. (Eds.), "Enclaves and Granite Petrology", Developments in Petrology, 13 (1991) Elsevier, Amsterdam, pp. 479-492.

[8] Vernon R.H., "Restite, xenoliths and microgranitoid enclaves in granites", J. Proc. R. Sot. NSW 116 (1983) 77-103.

[9] Harris N.B.W., Inger S., "Trace element modelling of pelite-derived granites", Contrib. Mineral. Petrol. 110 (1992) 46-56.

[10] White A.J.R., Chappell B.W., "Some supracrustal (S-type) granites of the Lachlan Fold Belt", Trans. R. Sot. Edinburgh Earth Sci. 79 (1988) 169-181.

[11] Carignan J., Hild P., Mevelle G., Morel J., Yeghicheyan D., "Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of reference materials BR, DR-N, UB-N, AN-G and GH", Geostandard Newsletter: The Journal of Geostandards and Geoanalysis 25, No 2-3 (2001) 187-198.

[12] Chppell B. W., White A. J. R., "I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh", Earth Sciences 83 (1992)1–26.

[13] Harrison, Watson, Hensen B.J., Green D.H., "Experimental study of the stability of cordierite and garnet in pelitic compositions at high temperatures and pressures. Synthesis of experimental data and geological applications", Contrib. Mineral. Petrol. 38 (1984) 15l- 166.

[14] Didier J., "The enclaves of the autochthonous granodiorites and quartz monzonites of the Velay massif in the French Massif Central. In: Granites and their enclaves. The bearing of enclaves on the origin of granites", Developments in Petrology Series No. 3. 2. Elsevier, Amsterdam (1973) 27-56.

[15] Vielzeuf D., Holloway J. R., "Experimental determination of the fluid-absent melting relations in the pelitic system", Contrib. Mineral. Petrol. 98 (1988) 257-276.

[16] Dahlquist J. A., Rapela C. W., Baldo E. G, "Cordierite bearing S-Type granitoids in the Sierra de Chepes (Sierras Pampeanas): petrogenetic implications", J. South Am. Earth Sci. 20 (2005) 231–251.

[17 Bouloton J., "Mise en evidence de corditrite heritee deh terrains traverses dans le pluton granitique des Oulad Ouaslam (Jebilet, Maroc)", Can. J. Earth Sci. 29 (1992) 658-668.

[18] Clemens J. D., Wall. V. J., "Origin and crystallisation of some peraluminous (S-type) granitic magmas", Can. Mineral. I’) (1981) 111-131.

[19] Wybom D., Chappell B. W., "The petrogenetic significance of chemically related plutonic and volcanic rock units", Geol. Mag. 123 (1986) 619-628.

[20] Clarke D. B., "Cordierite in felsic igneous rocks: A synthesis", Mineral. Mag. 59 (1995) 311-325.

[21] White A. J. R., Chappell B. W., "Ultrametamorphism and granitoid genesis", Tectonophysics 43 (1977) 7-22.

[22] Smith J. V., Brown W. L., "Feldspar Minerals. I. Crystal structures, physical, chemical and microstructural properties", Springer Verlag, Berlin (1988) 828 pp.

[23] Holtz F., Barbey P., "Genesis of peraluminous granites. II. Mineralogy and chemistry of the Tourem complex (North Portugal). Sequential melting vs. restite unmixing", J. Petrol. 32 (1991) 959-978.

[24] Montel J. M., Cheilletz A., "Nature and composition of restites in the Velay granite (France)", Terra Abstr. 1 (1989) 282.

[25] Watson E. B., Harrison T. M., "Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types", Earth Planet. Sci. Lett. 64 (1983) 295-304.

[26] Williams I. S., "Inherited zircon, a unique key to granites’ protoliths: An ion probe study", Geol. Sot. Am. Abstr. Progr. 21 (1989) 361-362.

[27] Pichavant M., Montel J. M., Richard L.R., "Apatite holubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model", Geochim. Cosmochim. Acta 56 (1992) 3855-3861.