Minerals chemistry and geochemistry of propylitic alteration in Astaneh granitoid (southwest Arak)

Abstract

Astaneh granitoid intrusion is located in southwest of Arak city that is part of Sanandaj-Sirjan zone.  This intrusive mass alterated under influence of hydrothermal fluids and so propylitic alteration is one of the most important types of alterations in this granitoid. Epidote, sphene, prehnite and quartz are important minerals in this alterated rocks. The weight percent of pistacist in epidote is about 24 so this base epidote origin if saussuritization of plagioclase took place. On the bases of Al and Fe in structural formula of sphene, these minerals are secondary in origin and forms during the alteration processes. Prehnites have low enrichment of iron so formed in low temperature and oxygen fugacity. Normalization of altered rocks to parent rock is indicator of depletion of REE and this depletion increased from propylitic to phyllic alteration. The variations of major oxides relative to immobile oxides of Al2O3 are indicative of increasing of Na2O in all zones except phyllic zone that it is reason of reduce plagioclase basicity. CaO increasing in propylitic zone and finally MgO is only depleted oxide in all alteration zones.

Keywords


]1 [افشاریان زاده ع. م.، صهبائی م.، "نقشه زمین‌شناسی 1:2500000 خرم آباد، سازمان زمین‌شناسی"(1371).

]2[ رادفر ج.، "بررسی زمین‌شناسی و پترولوژی سنگ‌های گرانیتوئیدی ناحیه آستانه-گوشه"( پایان‌نامه کارشناسی ارشد)"، دانشگاه تهران (1366). 109ص.

]3[ افشونی ز.، "بررسی دگرسانی گرانیت آستانه (پایان‌نامه کارشناسی ارشد)"، دانشگاه تهران (1386). 123 ص.

[4] Mayer C., Hemly J. J.,"Wall rock alteration in Geochemistry of hydrothermal ore deposits", (1967) 166-235.

[5] Montoya J. W., Hemley J. J., "relations and stabilities in alkalai feldspar and mica alteration reactions", Econmic Geology, 70 (1975) 577-594.

]6 [مظاهری ا.، "اهمیت پیستاشیت در تشخیص نوع اپیدوت"، ششمین همایش بلورشناسی و کانی شناسی ایران، دانشگاه علم صنعت تهران(1378).

[7] Armbruster T., Bonazzi P., Akasaka M., Bemanec V., Heuss S., "Recommended nomenclature of epidote group- minerals", Eur. J. Mineral. 18 (2006) 551-567.

[8] Deer W., Howie A, Zussman J., "An introduction to the rock forming minerals", Secend editions, Longman, London, (1992) 760.

[9] Eggleton R., Banfield J. F., "The alteration of biotite to chlorite", American Mineralogist, 70 (1985) 902-910.

[10] Harlov D., Seifert P., Nijland W., Forster H., "Formation of Al-rich titanite reaction rims on ilmenite in metamorphic rocks of fo2 and fH2O", Lithos 88 (2006) 72-84.

[11] Osman Mohamad Y., Maekawa H.,"Orgion of titanite in metarodingite from the Zagros thrust zone, Iraq". American Mineralogist, 930 (2008) 1133-1141.

[12] Kowallis B. J., Christiansen E. H., Griffen D. T., "Composition variation in titanite", Geological Society of American Abstracts with programs, (1997) 29-44.

[13] Smith D. C., "The pressure temperature dependence of Al-solubility in sphene in the system Ti-Al-Ca-O-F", Progress of Experimental Petrology, 18 (1981) 193-197.

[14] Frost B. R., Chamberlain K. R., Schumacher J. C, "Sphene phase relations and role as a geochronometr", Chamical Geology, 172 (2000) 131-148.

[15] Bird D. K., Schiffmean P., Williams W. A.,

"Calc-silicate mineralization active geothermal systems". Econ Geol. 79 (1984) 671-695.

[16] Liou J. G., Kim H. S., Marugama S., "Prehnite- epidote equibria and their petrologic applications", J. Petrol. 24 (1983) 321-342.

[17] Wheeler R., Browne S., Rodsers K. A., "Iron rich and iron poor prehnites from the way Linggo epithermal Au-Ag deposit, southwest Sumatra and Heber geothermal field, California", Mineralogical Magzine, 65 (2001) 206-394.

[18] Myashiro A., "Classification, characteristics and origion of ophiolites”,J. Geol, 83(1975) 249-260.

[19] Rollinson H. R, "Using geochemical data: evalution, presentation, interpretation", NewYork, John wiely and sons .(1993) 352.

[20] Fulignatti P., Gioncada A., Sabranna A.,

"Rare earth element behaviour in the alteration facies of the active magmatic-hydrothermal systems of volcano", Journal of volcanology and geothermal research, 88 (1998) 625-342

[21] Lewis A. J., Palmer M. R., Sturchio A. J., "The rare earth element geochemistry of acid- sulphate and acid-sulphate- chloride geothermal systems from Yellostone national park, Wyoming, USA", Geo Chim Cosmochim. Acta, 61 (1997) 695-706.

[22] Taylor R. F., Fryyer B. J., "Multie stage

hydrothermal alteration in porphyry copper





systems in northen Turkey: the temporal interplay of potassic, propylitic and phyllic fluids", Journal Earth Sci. 17 (1980) 901-926.

[23] Nessbitt H. V., Young G. M., "Early proterozoic climate and plate motions infered from major element", chemistry of lutites, nature. 299 (1982) 715-717.

[24] Altaner S. P., Ylagan S., Savin S., Aronson J. L., Pozzuoli A., "Geothermal geochronology and mass transfer associated with hydrothermal alteration of rhyolitic hyaloclastite from Ponaza Island", Italy. Geochemica and Cosmochimical, Acta. 70 (2003) 275-278.

[25] Maclean W. H., "Mass change calculations in altered rocks series", Mineralium deposita, 250 (1990) 44-49.

[26] Maclean W. H., Barrett T. J., "Litho geochemical techinqes using immobile elements", Geochemica Exploration, 48 (1993) 109-133.