Mineral chemistry of chlorite as a method for geothermometry of hydrothermal alteration from Qezildash sulfide deposit, NW IRAN

Abstract

Chlorite group minerals have a wide range of chemical compositions which reflect the physicochemical conditions of their crystallization. The solid solution (cationic substitution) model in crystal lattice of chlorite were satisfactorily used in estimation of its formation temperature in different geologic environments such as ore deposits, low-degree metamorphism, hydrothermal alteration and diagenesis by some researchers. In present research, the chlorite geothermometry method was used in the estimation of temperature of hydrothermal alteration and massive sulfide mineralization in the Qezildash area, northwest of Khoy city. In this work, at first, petrographic and mineralogical (XRD) studies were carried out on the samples taken from surface and borehole drilling cores. Eleven chlorite crystal grains which belong to different parts of hydrothermal system were selected and analyzed by electron microprobe equipment. Structural formulate were calculated on the basis of 14 oxygens. Chlorites have significant compositional variations and atomic solid solutions which reflect their formation temperatures. Chlorites from different parts of orebody and unmineralized altered rocks gave temperatures of formation of 318 to 368°C, and 202-210°C respectively. High-temperature chlorites have smaller Si contents than chlorites formed at low- temperatures.

Keywords


[1] Klein C., Hurlbut C.S., "Manual of mineralogy", John Wiley and Sons, 1999.

[2] Caritat P., Hutcheon I., Walshe J.L., "Chlorite geothermometry: a review", Clays and clay minerals, Vol. 41, 1993, pp.219-239.

[3] McDowell S.D., Elders W.A., "Authigenic layer silicate minerals in borehole Elmore 1", Salton sea geothermal field, California, USA, Contrib. Mineral. Pet., Vol. 74, 1980, pp. 293-310.

[4] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay minerals, Vol. 23, 1988, pp. 471-485.

[5] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer, the los Azufres geothermal system (Mexico)", Contrib. Mineral. Pet., Vol. 91, 1985, pp. 235-244.

[6] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of chemical geothermometry to low-temperature trioctaedral chlorites", Clays and clay minerals,Vol. 57, 2009, pp.371-382.

[7] امامعلی پور ع.، مسعودی ج.، "معرفی نهشته‌های مس قزل داش به‌عنوان کانه‌زایی ماسیوسولفاید تیپ قبرس در زون اوفیولیت ملانژ خوی"، اولین همایش انجمن زمین‌شناسی ایران، تهران 4-6 شهریور1376.

[8] امامعلی پور ع.، "متالوژنی افیولیت خوی با نگرشی ویژه بر انباشته‌های سولفیدی در آتشفشانی‌های زیردریایی قزل داش خوی"، رساله دکتری، دانشکده علوم زمین، دانشگاه شهید بهشتی،1380 .

[9] امامعلی پور ع.، "بررسی ژئوشیمی و خاستگاه زمین‌ساختی پیدایش انباشته‌های سولفوری در ناحیه قزل داش خوی"، پنجمین همایش انجمن زمین‌شناسی ایران، تهران، شهریور1380.

[10] Pflumio C., "Evidences for polyphased oceanic alteration of the extrusive sequence of the Semail ophiolite from the Salahi Block (Oman)", in: Peters, T.J.(Eds), Ophiolite genesis and evolution in the oceanic lithosphere, 1991, pp. 313-351.

[11] Richards H.G, "Mineralogical and metasomatic zonation of alteration pipes of yprus sulfide deposits", J .Geophys, Res., 1989, 84: 91-115.

[12] Heaton T. H. E., Sheppard S. M. F., "Hydrogen and oxygen isotope evidence for sea water hydrothermal alteration and ore deposition", Troodos complex Cyprous, Geol ., Soc., lord., spec., pub 1, Vol. 7 , 1977, pp. 42-57 .