Rb–Sr and Sm–Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

Abstract

The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineralization. The ore-bearing porphyries are I-type, metaluminous, high-K calc-alkaline to shoshonite intrusive rocks which were formed in island arc setting. These rocks are characterized by average of SiO2> 59 wt %, Al2O3 > 15 wt %, MgO< 2 wt %, Na2O> 3 wt %, Sr> 870 ppm, Y< 18 ppm, Yb< 1.90 ppm, Sr/Y> 55, moderate LREE, relatively low HREE and enrichment LILE (Sr, Cs, Rb, K and Ba) relative to HFSE (Nb, Ta, Ti, Hf and Zr). They are chemically similar to some adakites, but their chemical signatures differ in some ways from normal adakites, including higher K2O contents and K2O/Na2O ratios and lower Mg#, (La/Yb)N, (Ce/Yb)N and εNd in Maherabad rocks. Maherabad intrusive rocks are the first K-rich adakites that can be related with subduction zone. Partial melting of mantle hybridized by hydrous, silica-rich slab-derived melts or/and input of enriched mantle-derived ultra-potassic magmas during or prior to the formation and migration of adakitic melts could be explain their high K2O contents and K2O/Na2O ratios. Low Mg# values and relatively low MgO, Cr and Ni contents imply limited interaction between adakite-like magma and mantle wedge peridotite. The initial 87Sr/86Sr and (143Nd/144Nd)i was recalculated to an age of 39 Ma (unpublished data). Initial 87Sr/86Sr ratios for hornblende monzonite porphyry are 0.7047-0.7048. The (143Nd/144Nd)i isotope composition are 0.512694-0.512713. Initial εNd isotope values 1.45-1.81. These values could be considered as representative of oceanic slab-derived magmas. Source modeling indicates that high-degree of partial melting (relatively up to 50%) of a basaltic garnet-bearing (lower than 10%) amphibolite to amphibolite lacking plagioclase as a residual or source mineral can explain most of the moderate to low Y and Yb contents, low (La/Yb)N, high Sr/Y ratios and lack of negative anomaly of Eu in the rocks of the district. The geochemical signature of the adakites within the granitoid rocks represents a characteristic guide for further exploration for copper porphyry-type ore deposit in Eastern Iran.

Keywords


[1] Alavi M., "Tectonic map of the Middle East", Tehran, Geological Survey of Iran. Scale 1:5000000 (1991).

[2] Ramezani J., Tucker R.D., "The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics", American Journal of Science 303 (2003), 622-665.

[3] Tarkian M., Lotfi M., Baumann A., "Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran", Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, No. 51 (1983), 357-383.

[4] Stocklin J., Nabavi M.H., "Tectonic map of Iran", Geol. Surv. Iran (1971).

[5] Soffel H., Forster H., "Apparent polar wander path of Central Iran and its geotectonic interpretation", J. Geomag. Geoelectr, 32, Suppl. III, (1980) 117-135, Tokyo.

[6] Daavoudzadeh M., Soffel H., Schmidt, K., "On the rotation of central- east Iran microplate", N. Jb Geol. Palaont. Mh, 1983 (3), 180-192, 3 figs, Stuttgart (1981).

[7] Berberian M. King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Science 18 (1981), 210-265.

[8] Camp V., Griffis R., "Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran", Lithos 15 (1982), 221-239.

[9] Tirrul R., Bell I.R., Griffis R.J., Camp V.E., "The Sistan suture zone of eastern Iran", Geolc. Soc. Am. Bull, 94 (1983), 134-156. doi: 10.1130/0016-7606 (1983) 94<134: TSSZOE> 2.0. CO;2.

[10] Jung D., Keller J., Khorasani R., Marcks Chr., Baumann A., Horn, P., "Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran", Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, No. 51 (1983), 285-336.

[11] Vassigh H., Soheili M., "Sar-e-chah-e-shur 1:100000 map", sheet 7754, Geological Survey of Iran (1975). http://www.ngdir.ir/Downloads/PDownloadlist.asp[12] Movahhed- avval H., Emami M.H., "Mokhtaran 1:100000 map", sheet 7854, Geological Survey of Iran (1978). http://www.ngdir.ir/Downloads/PDownloadlist.asp[13] Eftekharnezhad J., Vahdati Daneshmand F., Kholgh M.H., "Khosf 1:100000 map", sheet 7755, Geological Survey of Iran (1989). http://www.ngdir.ir/Downloads/PDownloadlist.asp[14] Middlemost E. A. K., "Magmas and magmatic rocks", Longman Pub. Company, (1985) 221- 226.

[15] Shand S.J, "Eruptive rocks. Their genesis, composition, classification and their relation to ore-deposits", 1969 (facs. of 3rd ed. 1947). Hafner, New York. 488 pp (1947).

[16] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey", Contributions to Mineralogy and Petrology 58 (1976), 63–81.

[17] Pearce J. A., Harris N. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology 25 (1984), 956-983.

[18] Brown G. C., Thorpe R., Webb P.C., "The geochemical characteristics of granitoids in contrasting arcs and co mments on magma sources", Journal of Geological Society of London 141 (1984), 413-426.

[19] Reagan M.K., Gill J.B., "Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source", Journal of Geophysical Research 94 (1989), 4619-4633.

[20] Sun S-s., McDonough W.F., "Chemical and isotopic systematic of oceanic basalts: implication for mantle compositions and processes", In: A.D. Saunders and M.J. Norry (eds). Magmatic in the ocean basins. Geological Society. London. Special Publication 42 (1989), 313- 345.

[25] Taylor S.R. McLennan S.M. “The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks”, Blackwell, Oxford. (1985) 312 p.

[21] Boynton W.V., "Cosmochemistry of the rare earth elements: Meteorite studies", In Rare Earth Element Geochemistry (P. Henderson, ed.), (Developments in Geochemistry 2) (1985), 115-1522, Elsevier, Amsterdam.

[22] Ishihara S., Hashimoto M., Machida M., "Magnetic/ilmenite series classification and magnetic susceptibility of the Mesozoic-Cenozoic batholiths in Peru", Resource Geology 50 (2000), 123-129.

[23] Zindler A., Hart S. R., "Chemical geodynamics", Ann Rev earth Planet Sci 14, (1986) 493-571.

[24] Defant M.J., Dru mmond M.S., "Derivation of some modern arc magmas by melting of young subducted lithosphere", Nature 347 (1990), 662–665.

[25] Rollinson H., "Using Geochemical Data: Evalution, Presentation", Interpretation. Harlow, UK, Longman (1993), 352 p.

[26] Hou Z.Q., Gao Y.F., Qu X.M., Rui Z.Y., Mo X.X., "Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet", Earth and Planetary Science Letters 220 (2004), 139-155. doi:10.1016/S0012-821X(04)00007-X.

[27] Martin H., "Adakitic magmas: modern analogues of Archaean granitoids", Lithos 46 (1999), 411- 429. PII:S0024-4937(98)00076-0.

[28] Defant M. J., Dru mmond M. S., "Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc", Geology 21 (1993), 547–550.

[29] Dru mmond M. S., Defant M. J., Kepezhinskas P. K., "The petrogenesis of slab derived trondhjemite–tonalite– dacite/adakite magmas", Trans. R. Soc. Edinburgh: Earth Sci. 87 (1996), 205–216.

[30] Castillo R.P., Janney P.E., Solidum R.S., "Petrology and geochemistry of Camiguia Island, Southern Phillippines: insight to the source of adakites and other lavas in a complex arc setting", Contribution Mineralogy and Petrologoy 134 (1999), 33-51.

[31] Martin H., Smithies R.H., Rapp R., Moyen, J.F., Champion D., "An overview of adakite, tonalite-trondhjemite-granodiorite (TTTG), and sanukitoid: relationships and some implications for crustal evolution", Lithos 79 (2005), 1-24. doi:10.1016/j.lithos.2004.04.048.

[32] Richards J.P., Kerrich R., "Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis", Economic Geology 102 (2007), 537- 576. 0361-0128/07/3668/537-40.

[33] Zhang Q., Wang Y., Wang Y.L., "Preliminary study on the components of the lower crust in east China Plateau during Yangshanian Period: constraints on Sr and Nd isotopic compositions of adakite-like rocks", Acta Petrol. Sin. 17 (2001), 505–513.

[34] Xiao L., Zhang H.F., Clemens J.D., Wang Q.W., "Late Triassic granitoids of the eastern margin of the Tibetan Plateau: petrogenesis and implications for tectonic evolution", Lithos, in review (2006).

[35] Muller D., Groves D.I., "Potassic igneous rocks and associated gold-copper mineralization", 3rd edn. Springer, Berlin Heidelberg New York (2000).

[36] Maughan D.T., Keith J.D., Christiansen E.H., Pulsipher, T., Hattori, K., Evans, N.J., "Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, U.S.A", Mineralium Deposita 37 (2002), 14-37. 10.1007/s00126-001-0228-5.

[37] Holliday J.R., Wilson A.J., Blevin P.L., Tedder I.J., Dunham P.D., Pfitzner M., "Porphyry gold-copper mineralization in the Cadia district, eastern Lachlan fold belt, NSW, and its relationship to shoshonitic magmatism", Mineralium Deposita 37 (2002), 100-116. doi:10.1007/s00126-001-0233-8.

[38] Rogers N. W., Jame D., Kelley S. P., De Mulder M., "The generation of potassic lavas from the eastern Virunga province, Rwanda", Journal of Petrology 39 (1998), 1223-1247.

[39] Prouteau G., Scaillet B., Pichavant M., Maury R., "Evidence for mantle metasomatism by hydrous silica melts derived from subducted oceanic crust", Nature 410 (2001), 197-200.

[40] Schneider M. E., Eggler D. H., 1986. "Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism", Geochimica et Cosmochimica Acta 50 (1986), 711-724.

[41] Müller D., Groves D. I., "Potassic Igneous Rocks and Associated Gold–Copper Mineralization", Springer-Verlag, Berling (1995).

[42] Petford N., Atherton M., "Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru", Journal of Petrology 37 (1996), 1491-1521.

[43] Rapp P.R., Shimizu N., Norman M.D., Applegate, G.S., "Reaction between slab-derived melt and peridotite in the mantle wedge: Experimental constrains at 3.8 GPa", Chemical Geology 160 (1999), 335-356. PII: S0009- 2541 99 00106-0.

[44] Zamora D., "Fusion experimentale de la croute oceanique subductee a 1.5 GPa", Unpublished memoir, University of Clermont-Ferrand, France (1996), 46 pp.

[45] Macpherson C.G., Dreher S.T., Thirlwall M F., "Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines", Earth and Planetary Science Letters 243 (2006), 581- 593. doi:10.1016/j.epsl.2005.12. 034.

[46] Martin H., "The Archaean grey gneisses and the genesis of the continental crust". In: Condie, K.C. Ed., The Archaean Crustal Evolution. Elsevier (1995), 205–259.

[47] Munker C., Worner G., Yogodzinski G., Churikova T., "Behavior of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas", Earth and Planetary Science Letters 224 (2004), 275- 293. doi:10.1016/j.epsl.2004.05.030.

[48] Tiepolo M., Vannucci R., Oberti R., Foley S., Bottazzi P., Zanetti A., "Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal chemical constraints and implications for natural systems", Earth and Planetary Science Letters 176 (2000), 185–201. PII:S0012-821X(00)00004-2.

[49] Stalder R., Foley S. F., Brey G. P., Horn I., "Mineral-aqueous fluid partitioning of trace elements at 900 – 1200 jC and 3.0– 5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism", Geochimica et Cosmochimica Acta 62 (1998), 1781– 1801. 0016-7037/98 $19.00 1 .00

[50] Xiong X. L., in press. "Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite", Geology (in press).

[51] Xiong X. L., Adam T. J., Green T. H., "Rutile stability and rutile/ melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis", Chemical Geology 218 (2005), 339–359. doi:10.1016/j.chemgeo.2005.01.014.

[52] Bédard J. H., "A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle", Geochimical et Cosmochimica Acta 70 (2006), 1188–1214. doi:10.1016/j.gca.2005.11.008.

[53] Adam J., Green T. H., Sie S. H., "Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content", Chemical Geology 109 (1993), 29– 49.