Mineralogy, textural relations and mineral compositions of the metaperidotites from the Naghadeh area, West Azerbaijan province

Abstract

The Naghadeh metamorphic complex at the West-Azerbaijan Province is located at termination of the NW Sanandaj-Sirjan Zone. Major varieties of the metamorphic rocks in this area are: amphibolites, greenschists, marbles and metaperidotites. The metaperidotites are classified into two groups, serpentinised metaperidotites and serpentinites. Orthopyroxene, clinopyroxene, olivine and spinel are the magmatic relict minerals in the serpentinised metaperidotites. Mineral chemistry of the orthopyroxene has been determined as Ca0.03-0.06 Mg1.68-1.69Fe2+0.17-0.18 Cr0.02 Al0.07-0.09)M (Al0.02-0.05Si1.95-1.98)TO6. Chemical formula of the analysed clinopyroxenes is Di96-98Hd1.0-3.0Ae0.0-1.0. The composition of olivine is considerably homogeneous (Fo86.50Fa13.50). On the basis of the mineralogical and textural evidence, the protolith composition in the investigated metaperidotites could be considered as lherzolite and rarely harzburgite and dunite. The serpentine polymorphs in the studied metaperidotites are distinguished based on the mineralogical and textural features. In this regards, chrysotile and lizardite are the low temperature polymorphs which occur within paragenesis, containing talc and calcite/magnesite. During prograde metamorphism, chrysotile and lizardite are disappeared as antigorite co-existing with termolite/actinolite and clinochlore are formed. The metamorphic events in the Naghadeh peridotites can be considered in two stages; (1) metasomatic stage under H2O-bearing fluid conditions at T<280 ºC and (2) the prograde regional metamorphism under inception of amphibolite facies (T~500 ºC and P ~7kbar). Considering the Naghadeh metamorphic complex in northwestern extension of the Sanandaj-Sirjan Zone, the prograde metamorphic stage of the Naghadeh metaperidotites can be considered comparable to the metamorphic events from the Sanandaj-Sirjan Zone, corresponding to the closure of Neotethys and final continental collision.

Keywords


[1] Stöcklin J., ″Possible ancient continental margins in Iran″, In Burk, C.A. and Drake, C.L.

(ed.): The geology of continental margins″, Springer. New York. (1974) 873-877.

[2] Alavi M., ″Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran″, Geological Society Of America Bulletin, 103 (1991) 983-992.

[3] Arvin M., Robinson P.T., ″The petrogenesis and tectonic setting of lavas from the Baft ophiolitic melange, southwest of Kerman, Iran″, Canadian Journal of Earth Sciences, 31 (1994) 824–834.

[4] Salavati M., Kananian A., Noghreian M., Darvishzadeh A., Samadi Soofi A., ″Discovery of a Neo-Tethyan ophiolite in Northern Iran: Evidence for its formation at a slow–spreading center. In: (Eds.) Gideon Rosenbaum, Declan De Paor, Daniel Köhn, Guiting Hou, and Talat Ahmad, General Contributions″, Journal of the Virtual Explorer, 28 (2008) 2 pp.

[5] مؤید م.، ″بررسیهای پترولوژیکی نوار ولکانو-پلوتونیک ترشیاری البرز غربی-آذربایجان با نگرشی ویژه بر منطقه هشتجین″، رساله دکتری، دانشگاه شهید بهشتی1380. ، 328 ص.

[6] Dercourt J., Zonenshain L.P., Ricou L.-E., Kazmin V.G., Lepichon X., Knipper A.L.,Grandjacquet, C., Sbortshikov, I.M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet J.-C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P., Biju-Duval B., ″Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias″, Tectonophysics, 123 (1986) 241-315.

[7] Berberian M., King G.C.P., ″Towards a paleogeography and tectonic evolution of

Iran″, Canadian Journal of Earth Sciences, 18 (1981) 210–265.

[8] نبوی م. ح.، ″مقدمه‌ای بر زمین‌شناسی ایران. سازمان زمین‌شناسی ایران″، (1355) 109 ص.

[9] افتخارنژاد ج.، ″تفکیک بخش‌های مختلف ایران از نظر وضع ساختمانی در ارتباط با حوزه‌های رسوبی″، نشریه انجمن نفت، 82 (1359) 28-19.

[10] خدابنده ع. ا.، ″نقشه زمین‌شناسی 100000/1 نقده″، سازمان زمین شناسی و اکتشافات معدنی کشور، 1383.

[11] Droop G.T.R., ″A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria″, Mineralogical Magazine, 51 (1987) 431–435.

[12] Kretz R., ″Symbols for rock-forming minerals″, American Mineralogist, 68 (1983) 277-279.

[13] Wicks F.J., Whittaker E.J.W., ″Serpentine textures and serpentinization″, Canadian Mineralogist, 15 (1977) 459-488.

[14] O’Hanley D.S., ″Serpentinites: Records of tectonic and petrologic history″, Oxford University Press, U.K. (1996) 277 pp.

[15] Viti C., Mellini M., Rumori C., ″Exsolution and hydration of pyroxenes from partially serpentinized harzburgites″, Mineralogical Magazine, 69 (2005) 491-507.

[16] Le Gleuher M., Livi K.J.T., Veblen D.R., Noack Y., Amouric M., ″Serpentinization of enstatite from Pernes, France: Reaction microstructures and the role of system openness″, American Mineralogist, 75 (1990) 813–824.

[17] Wicks F.J., O’Hanley D.S., ″Serpentine minerals: structure and petrology. In Hydrous Phyllosilicates (Exclusive of Micas), (S.W. Bailey, editor)″, Reviews in Mineralogy, 19 (1988) 91–167.

[18] O’Hanley D.S., Wicks F.J., ″Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia″, Canadian ineralogist, 33 (1955) 753–73.

[19] Li X.P., Rahn M., Bucher K., ″Metamorphic processes in rodingites of the Zermatt-Saas ophiolites″, International Geological Review, 46 (2004) 28-51.

[20] Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi D., ″Nomenclature of pyroxenes″, American Miniralogist, 62 (1988) 53-62.

[21] Spear F.S., ″An experimental study of hornblende stability and compositional variability in amphibolite″, American Journal of Science, 281 (1981) 697-734.

[22] Ulmer P., Trommsdorff V., ″Phase relations of hydrous mantle subducting to 300 km. In Mantle Petrology: Field Observations and High Pressure Experimentation (Y. Fei et al.,editors): A Tribute

to Francis R. (Joe) Boyd″, Geochemical Society Special Publication, 6 (1999) 259–281.

[23] Auzende A.L., Guillot G., Devouard B., Baronnet A., ″Behavior of serpentinites in convergent context: Microstructural evidence″, European Journal of Mineralogy, 18 (2006) 21-33.

[24] Powell R., Holland T.J.B., ″An internally consistent dataset with uncertainties and correlations: Applications to geobarometry, worked examples and a computer program″, Journal of Metamorphic Geology, 6 (1988) 173-204.

[25] Evans B.W., Johannes W., Oterdoom H., Trommsdorff V., ″Stability of chrysotile and antigorite in the serpentine multisystem″, Schweizerische Mineralogische und Petrographische Mitteilungen, 56 (1976) 79–93.

[26] Wunder B., Schreyer W., ″Antigorite: Highpressure stability in the system MgO-SiO2-H2O (MSH) ″, Lithos, 41 (1997) 213-227.

[27] Mysen B.O., Ulmer P., Konzett J., Schmidt M.W., ″The upper mantle near convergent plate boundaries. In R.J. Hemley, Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth’s Deep Interior″, Mineralogical Society of America, 37 (1998) 97–138.

[28] Bromiley G. D., Pawley A. R., ″The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability″, American Mineralogist, 88 (2003) 99-108.

[29] Hoogerduijn Strating E.H., Rampone E., Piccardo G.B., Drury M.R., Vissers R.L.M., ″Subsolidus emplacement of mantle peridotites during incipient oceanic rifting and opening of the Mesozoic Tethys (Voltri Massif, NW Italy)″, Journal of Petrology, 34 (1993) 901–927.

[30] Coleman R., ″Ophiolites: ancient oceanic lithosphere?″, (1977), Springer-Verlag, (New York).

[31] حاجی علی اوغلی ر، ″بررسی پترولوژی سنگ‌های دگرگونی کالک-سیلیکات و متابازیک مجموعه تخت سلیمان

در شما‌ل‌شرق تکاب (غرب ایران) ″، رساله دکتری، دانشگاه تبریز، 1386، 190 ص.

[32] Hajialioghli R., Moazzen M., Droop G.T.R., Oberhansli R., Bousquet R., Jahangiri A., Ziemann M., "Serpentine polymorphs and P-T evolution of meta-peridotites and serpentinites in the Takab area, NW Iran", Mineralogical Magazine, 71 (2007) 155–174