The effects of acid drainage in formation of environmental minerals (secondary minerals) in Galand-rud coal mines and waste materials of Vatani coal washing, Mazandaran province

Abstract

The oxidation of sulfide minerals in coal and mine's waste materials produce acid mine drainage. The evaporation, oxidation, dilution and neutralization of this acid drainage lead to formation of secondary minerals. Due to having broad surface spreading these minerals have the potential of maintaining sulfates and many of the metallic elements. In order to carry out mineralogical and geochemical studies on environmental minerals formed, the sampling has been done in the dumping site of the Vatani coal washing factory and coal mine of Galand-rud on 2008. On the basis of X-ray diffraction results the minerals identified are epsomite, hexahyrate, gypsum, halite, goethite, hematite, dolomite, siderite, kaolinite, montmorillonite, illite and quartz as major minerals and jarosite as a minor mineral. The geochemical analyses indicate the enrichment of MgO, SO3 and trace elements of Cr, Pb, Co, Rb in secondary minerals relative to the mine's coal and dumped materials. On the other hand, the environmental minerals are enriched in Ni, Zn, pb, Cu, Cr, Co up to levels more than the Clarke abundance and average of China, America & world coal mines. On the basis of Gibb's diagrams the cations and anions present in mine’s drainages are originate from parent materials. According to hydrogeochemistry saturation index model in acid drainage of dumping area of Vatani coal washing factory, goethite, Iron, hydroxides, calcite, dolomite are in saturated, while iron sulfates melanterite and jarosite are under saturated.

Keywords


[1] Evangelou V. P., “Pyrite Oxidation and its Control“, CRC Press, New York (1995) 293.

[2] Lottermoser TTERMOSER B. G.,. “Mine Wastes: Characterization, Treatment and Environmental Impacts”, Springer, Berlin (2003) 304.

[3] Bernhard D., “Basic Concepts of Environmental Geochemistry of Sulfide Mine-Waste”, Centre d'Analyse Minérale, Université de Lausanne, Switzerland (2005) 31.

[4] Valente T. M., Gomes C. L., “Occurrence, properties and pollution potential of environmental minerals in acid mine drainage”, Science of the total Environmental 407 (2009 ) 1135 – 1152.

[5] Nordstrom D. K., Jenne E.A., Ball J.W., “Redox equilibria of iron in acid mine waters. In: Jenne, E.A. (Ed.): Chemical modeling in aqueous systems”, Am. Chemical Society Symposium. Washington, D.C., Series 93(1979) 51-79.

[6] Alpers C.N., Blowes D.W., Nordstrom D.K., Jambor J.L., “Secondary minerals and acid mine-water chemistry”, In: Jambor J.L., Blowes D.W.,” (Eds) The environmental geochemistry of sulfide mine-wastes”, Mineralogical Association of Canada, Short Course Handbook, vol 22 (1994) 247–270.

[7] Harris D L., Lottermoser B G., Duchesne J., “Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland”, Australian Journal of Earth Sciences (2003) 797-809.

[8] Jambor J. L., Nordstrom D. K., Alpers C. N., ”Metal-sulfate salts from sulfide mineral oxidation”, In: Alpers C. N., Jambor J. L., Nordstrom D. K., eds. “Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance”, Reviews in Mineralogy and Geochemistry 40 (2000) 303–350.

[9] Buckby T., Black S., Coleman M.L., Hodson M.E., “Fe-sulphate-richevaporative mineral precipitates from the Rio Tinto, southwest Spain”, Mineral Mag (2003)78-263.

[10] Smith K.S., Ranville J.F., Plumlee G.S., Macalady D.L., “Predictive doublelayermodeling of sorption inmine drainage systems”, In: Jenne EA, editor, Adsorption of metal by geomedia – Variables, mechanisms and model applications”, Academic Press (1998) 48-522.

[11] Evangelou V.P., Zhang Y.L., “A review: pyrite oxidation mechanisms and acid mine drainage prevention”, Crit Rev Environ Sci Technol 25 (1995)141–99.

[12] Patricia A., Clara T., Carlos A., “Effect of schwertmannite ageing on Acid Rock Drainage geochemistry”, 9th International Mine Water Congress 67-73.

[13] شرکت مهندسی هریس پی کوه.، "طرح تجهیز زغال‌سنگ گلندرود، زمین شناسی و اکتشافات"، چاپ نشده (1381) 350 ص.

[14] شرکت مهندسین مشاور خزر آب.، "مطالعات تامین، انتقال، ذخیره سازی و شبکه توزیع آب شهرهای نور، رویان، ایزده، چمستان"، گزارش هواشناسی و هیدروزئولوژی، جلد اول (1379) 119ص.

[15] Yazdi M., Esmaeilnia A. S., “Geochemical properties of Coal in the Lushan Coalfield of Iran”, Coal Geology 60 (2004) 73-79.

[16] Kim J. J., kim S. J., Tazaki K., “Mineralogical characterization of microbial ferrihydrite and Schwertmannite and mon-biogenic AL-sulfate precipitates from acid mine drainage in the Donghae mine Korea”, Environmental Geology 42 (2002)19-31.

[17] Gibbs R. J., “Mechanisms controlling world water chemistry”, Science 17 (1970) 1088-1090.

[18] Jane M., Hammarstrom R., Seal A. L., Meier . J. C., “Weathering of sulfidic shale and copper mine waste: secondary minerals and metal cycling in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA”, Environmental Geology 45 (2003) 35–57.

[19] Blowes D., Ptacek C. J., “The Geochemistry of Acid Mine drainage”, Treatise on Geochemistry Volume 9 (2003)149-204.

[20] Bigham J. M., Schwertmann U., Carlson L., “Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage. In: Biomineralization Processes of Iron and Manganese – Modern and Ancient Environments (Eds HCW Skinner and RW Fitzpatrick)”, Catena Supplement 21 (1992) 219-232.

[21] Schwertmann U., Bigham J.M., Murad E., “The first occurrence of schwertmannite in a natural stream environment”, European Journal of Mineralogy 7(1995) 547-552.

[22] Frau F., “The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications”, Mineralogical Magazine 64 (2000) 995 –1006.

[23] Deer W.A., Howie R.A., Zussman J., ”An Introduction to the Rock-forming Minerals, Longman”, Harlow/Wiley, New York (1992) 696.

[24] Merritt R. D., “Thermal alteration and rank variation of coals in the Matanuska field, south-central Alaska”, International Journal of Coal Geology 14 (1990) 255-276.

[25] رضایی ب، مهردادی ن.، "مطالعه و بررسی کاهش اثرات زیست‌محیطی ناشی از پساب کارخانه زغال‌شویی زیرآب "، مجله محیط شناسی شماره 25 (1379) ص 23-28.

[26] قلی پور م، مظاهری الف، رقیمی م، شمعانیان غ.م.،

" بررسی اثرات زیست‌محیطی زهاب اسیدی معدن در باطله‌های کارخانه زغال‌شویی زیرآب، استان مازندران "، مجله بلورشناسی و کانی‌شناسی ایران، شماره 2 (1388) ص 173-186.

[27] Ren D., Zhao F., Wang Y., Yang S., “Distribution of minor and trace element in Chinese Coal”, Coal Geology 40 (1999) 109-118.

[28] Christanis K., Georgako Poulos A., Freandez Turiel J. L., Bouzinos A., “Geological factors influencing the concentration of trace element in the Philppi peatland, eastern Macedonia, Greece”, Coal Geology 36(1998) 295-313.

[29] Bigham J. M., Schwertmann U., Carlson L., Murad E., “A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters”, Geochimica Cosmochimica Acta 2743 (1990) 54-58.

[30] Rose S., Ghazi A. M., “Experimental Study of the stability of metals associated with iron oxyhdroxides precipitated in acid mine drainage”, Environmental Geochemical (1998) 364-370.

[31] آقائی م، رقیمی م، شمعانیان غ. ح، قلی پور م.، "هیدروئوشیمی آبهای زهکش شده از باطله کارخانه زغال‌شویی وطنی، استان مازندران"، بیست و هفتمین گردهمایی علوم زمین و سیزدهمین همایش انجمن زمین شناسی ایران، (1388) ص 1-7.

[32] Parkhurst D.L., Appelo C.A.J., "User’s Guide to PHREEQC (Version 2), a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations,Water Resources Research Investigations", Report 99-4259 (1999) 312.

[33] Keith D.C., Runnells D.D., Esposito K.J., Chermak J.A., Levy D.B., Hannula S.R., Watts M., Hall L., “Geochemical models of the impact of acidic groundwater and evaporative sulfate salts on Boulder Creek at Iron Mountain, California’, . Applied Geochemistry 16 (2001) 947–961.