خاستگاه ماگماتیسم آداکیتی در منطقه‌ی مسجد داغی جلفای آذربایجان شرقی

نویسندگان

1 دانشگاه تهران

2 دانشگاه بوعلی سینا همدان

3 شرکت ملٌی صنایع مس ایران

چکیده

سنگ‌های آتشفشانی و توده‌های نیمه عمیق ائوسن- الیگوسن مسجد داغی در ۳۵ کیلومتری شرق جلفا و در کنار رود ارس واقع شده‌اند. این منطقه از نظر زمین­شناسی ساختاری بخشی از زون البرز باختری – آذربایجان است. سنگ‌های آتش‌فشانی از نوع ریولیت، داسیت تا تراکی آندزیت و سنگ‌های نیمه عمیق شامل مونزونیت پورفیری تا دیوریت پورفیری هستند. غنی‌شدگی از عناصر LREE و LILE نسبت به HREE و HFSE ، بیهنجاری منفی از عناصر Ti, Ta و Nb و نسبت‌های بالای Ba/Nb و Ba/Ta همراه با نمودارهای جدا کننده­ی محیط زمین­ساختی بیانگر شکل‌گیری این سنگ‌ها در محیطی وابسته به فرورانش در یک حاشیه­ی فعال قاره‌ای است. ویژگی‌های ژئوشیمیایی نمونه‌ها، SiO2> %57، MgO<%3، میزان پایین  Yو ‎‎Yb (Y<13 and Yb<1.4)، نسبت‌های Sr/Y>40 و La/Yb>20 حاکی از شکل‌گیری آن‌ها از ماگمای آداکیتی پر سیلیس در منطقه است. این شواهد همراه با موقعیت نمونه‌ها در نمودارهای ژئوشیمیایی نشان می‌دهد که سنگ‌های مورد بررسی احتمالاً از ذوب پوسته­ی اقیانوسی با ترکیب اکلوژیت و آمفیبولیت گارنت‌دار حاصل شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Genesis of Adakitic Magmatism in Masjed Daghi Region in Julfa, Eastern Azarbaijan

چکیده [English]

Eocene- Oligocene volcanic and subvolcanic bodies of Masjed-Daghi Located in 35 km East of Jolfa close of Aras River. On the base of structural geology the study area is a part of the West Alborz-Azarbayejan zone. Volcanic rocks are rhyolite, dacite to trachyandesite and subvolcanic rocks are porphyritic monzonite to diorite. The Formation of these rocks related to  subduction zone in an active margin continent that are described by enriched LREE and LILE elements rather than HREE and HFSE, negative anomaly Ti, Ta and Nb elements and high ratio Ba/Nb and Ba/Ta in diverting tectonic setting diagrams. In this area, chemical characteristics such as SiO2>57%, MgO<3%, low ratio Y and Yb (Y<13 and YB<1.4), Sr/Y>40 and La/Yb>20 are representing formation from full of SiO2 adakitic magma. These evidences with geochemical diagrams probably indicate that studied rocks product from melting ocean crust along component eclogite and garnet amphibolite.

کلیدواژه‌ها [English]

  • Adakitic Magmatism
  • subduction
  • Subducting oceanic crust
  • Masjed Daghi
  • Azarbaijan
[1] Kay R.W., "Aleutian magnesian and esites–melts from subducted Pacific Ocean crust.", Journal of Volcanology and Geothermal Research 4 (1978) 117–132. ##

[2] Jean-François Moyen, "High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”, Lithos 112 (2009) 556-574. ##

[3] Defant M.J., Drummond M.S., "Derivation of some modern arc magmas by melting of young subducted.", lithosphere. Nature 367 (1990) 662–665. ##

[4] Martin H., Smithies R.H., Rapp R.P., Moyen J.-F., Champion D.C., "An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution.", Lithos 79 (1–2) (2005) 1–24. ##

[5] Rapp R., Xiao L., Shimizu N., "Experimental constraints on the origin of potassium-rich adakites in eastern China.", Acta Petrologica Sinica 18 (2002) 293–302. ##

[6] Xu Y.G., et al., "Crust–mantle interaction during the tectono-thermal reactivation of the North China craton: constraints from SHRIMP U–Pb zircon chronology and geochemistry of Mesozoic plutons from Western Shandong.", Contributions to Mineralogy and Petrology 147 (2004) 750–767. ##

[7] Zhou M.F., Yan D.P., Wang C.L., Qi L., Kennedy A., "Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China." Earth and Planetary Science Letters 248 (2006) 286–300. ##

[8] Ding L., Kapp P., Yue Y., Lai Q., "Postcollisional calc-alkaline lavas and xenoliths from the Southern Qiangtang terrane", central Tibet. Earth and Planetary Science Letters 254 (2007) 28–38. ##

[9] Gao Y., et al., "Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism.", Contributions to Mineralogy and Petrology 153 (2007) 105–120. ##

[10] Wang Q., et al., "Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slabderived melts in the mantle wedge.", Contributions to Mineralogy and Petrology 155 (4) (2007a) 473–490. ##

[11] Wang Q., et al., "Petrogenesis of carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the central Asia orogenic belt.", Chemical Geology 236 (2007b.) 42–64. ##

[12] Xiao L., et al., "Late Triassic granitoids of the eastern margin of the Tibetan Plateau: geochronology, petrogenesis and implications for tectonic evolution.", Lithos 96 (2007) 436–452. ##

[13] Putchel I., et al., "Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero–Kenozero greenstone belt, SE Baltic shield: isotope and trace element constraints.", Geochimica et Cosmochimica Acta 63, (1999) 3579–3595. ##

[14] Polat A., Munker C., "Hf–Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province", Canada. Chemical Geology 213 (4) (2004) 403–429. ##

[15] Naqvi S.M., Khan R.M.K., Manikyamba C., Ram Mohan M., Khanna T.C., "Geochemistry of the neoarchaean high-mg basalts, boninites and adakites from theKushtagi–Hungund greenstone belt of the eastern Dharwar craton (EDC); implications for the tectonic setting.", Journal of Asian Earth Sciences 27 (2006) 25–44. ##

[16] Polat A., Kerrich R., "Reading the geochemical fingerprints of Archean hot subduction volcanic rocks: evidence for accretion and crustal recycling in a mobile tectonic regime.", In: K. Benn, J.-C. Mareschal and K.C. Condie (Editors), Archean geodynamics and environments. American Geophysical :union: Monographs. American Geophysical :union:, (2006) pp. 189–213. ##

[17] Ujike O., Goodwin A.M., Shibata T., "Geochemistry and origin of Archean volcanic rocks from the upper Keewatin assemblage (ca. 2.7 Ga), Lake of the Woods greenstone belt", westernWabigoon subprovince, Superior Province, Canada. Island Arc 16, 191–208. ##

[18] Manikyamba C., Kerrich R., Khanna T.C., Keshav Krishna K., Satyanarayanan M., "Geochemical systematics of komatiite–tholeiite and adakitic-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane", Dharwar craton, India. Lithos 106 (1–2) (2008) 155–172. ##

[19] Morris J.D., "Slab melting as an explanation of Quaternary volcanism and aseismicity in southwestern Japan.", Geology 23 (1995) 395–398. ##

[20] Maury R., Sajona F.G., Pubellier M., Bellon H., Defant M.J., "Fusion de la croûte océanique dans les zones de subduction/collision récentes: l'exemple de Mindanao (Philippines).", Bulletin de la Société Géologique de France 167 (1996) 579–595. ##

[21] Martin H., "The adakitic magmas: modern analogues of Archaean granitoids.", Lithos 46 (3) (1999) 411–429. ##

[22] Peacock S.M., "Fluid processes in subduction zones.", Science 248 (1990) 329–337. ##

[23] برنا ب.، محمدی ب.، "پروژه اکتشاف طلا و مس در زون ارسباران"، گزارش نقشه زمین شناسی 1000/1 و حفاری های انجام شده در مسجد داغی (سیه رود جلفا) ، سازمان زمین شناسی و اکتشافات معدنی کشور، طرح اکتشاف سراسری ذخایر فلز، (1384) ص 1-112. ##

[24] اکبرپور ا.، رسا ا.، پرتو م.، محمدی ب.، "بررسی کانی زایی طلا در محدوده مسجد داغی جلفا"، فصل نامه علوم زمین، شماره 1 (1385) ص42-51. ##

[25] Le Maitre R. W., "A Classification of Igneous Rocks and Glossary of Terms, Blackwell", Oxford. 1989. ##

[26] Winchester J.A., Floyd P.A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements.", Chemical Geology, 20 (1977) 325–343. ##

[27] Irvine T.N., Baragar W.R.A., "A guide to the chemical classification of the common volcanic rocks.", Can. J. Earth Sci. 8 (1971) 523-548. ##

[28] Miyashiro A., "Volcanic rock series in island arcs and continental margins.", American Journal of Science 274 (1974) 321–355. ##

[29] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes.", In: for mantle processes. Saunders, A.D., Norrey, M.J. (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Pulb. 42 (1989) 313-345. ##

[30] Pearce J.A., Harris N.B.W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.", J. Petrol. 25: 956–983.Wilson, 1989. ##

[31] Fitton J.G., James D., Kempton P.D., Ormerod D.S., Leeman W.P., "The role of lithosferic mantle in the generation of Late Cenozoic basic magmas in the Western United States.", Journal of Petrology, Special litosphere issue, pp. 331–349. ##

[32] Pearce J.A., "The role of sub-continental lithosphere in magma genesis at destructive plate margins.", In: Hawkesworth. C.J., Norry, M.J. Eds. Continental basalts and mantle xenoliths. Shiva, Nantwhich. (1983) 230–249. ##

[33] Shandle E.S. Gorton M.P., "Application of high field strength elements to discriminate tectonic setting in VMS environment", Economic geology, 97 (2002) 629-642. ##

[34] Wood D.A., "The application of a Th-Hf-Ta diagram to problems of tectonomagnetic classification and to establishing nature of basaltic lavas of the British Tertiary Volcanic Province Earth Planet.", Sci.Lett., 50 (1980) 11-30. ##

[35] Hofmann AW., "Chemical differentiation of the Earth. The relationship between mantle", continental crust and oceanic crust. Earth Planet Sci Lett 90 (1988) 297–314. ##

[36] Schmidberger SS, Hegner E., "Geochemistry and isotope ststematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany)-implications for Late-Variscan orogenic development.", Contrib Mineral Petr 135 (1999) 373–385. ##

[37] Stern C.R., Kilian R., "Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone.", Contrib. Mineral. Petrol. 123 (1996) 263–281. ##

[38] Castillo P.R., Janney P.E., Solidum R.U., "Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting." Contrib. Mineral. Petrol. 134 (1999) 33–51. ##

[39] Stern R.A., Hanson G.N., "Archean high-Mg granodiorite: a derivative of light rare earth elementenriched monzodiorite of mantle origin.", J. Petrol. 32 (1991) 201–238. ##

[40] Guo F., Nakamuru E., Fan W., Kobayoshi K., Li C., "Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China.", J. Petrol. 48 (2007) 661–692. ##

[41] Xu J.-F., Shinjo R., Defant M.J., Wang Q., Rapp R.P., "Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?", Geology 30 (12) (2002) 1111–1114. ##

[42] Chung S.L., Liu D.Y., Ji J.Q., Chu M.F., Lee H.Y., Wen D.J., Lo C.H., Lee T.Y., Qian Q., Zhang Q., "Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet.", Geology 31 (2003) 1021–1024. ##

[43] Rapp R., Shimizu N., Norman M.D., Applegate G.S., "Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa.", Chemical Geology 160 (2000) 335–356. ##

[44] Rapp R., Yaxley G., Norman M.D., Shimizu N., "Comprehensive trace element characteristics of experimental TTG and sanukitoid melts. Sixth International Hutton Conference on the origin of granitic rocks", Stellenbosch, South Africa. 2007. ##

[45] Richards J.R., Kerrich R., "Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis.", Economic Geology 102 (4) (2007) 537–576. ##

[46] Pe-Piper G., Piper D.J.W., Matarangas D., "Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite", Delos, Cyclades, Greece. Lithos. 60 (2002) 47–66. ##

[47] White A.J.R., Chppel B.W., "Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia", Geological Society American Memory. 159 (1983) 21-34. ##

[48] Chappell B.W., White A.J.R., "I and S-type granites in the Lachlan Fold Belt.", Tran. R. Soc. of Edinb. Earth Sci. 83 (1992) 1-26. ##

[49] Hawkesworth C.J., Turner S.P., McDermott F., van Calsteren P., "U–Th isotopes in arc magmas: implications for element transfer from the subducted crust.", Science 276 (1997) 551–555. ##

[50] Vroon P.Z., VanBergen M.J., White W.M., Varekamp J.C., "Sr–Nd–Pb isotope systematics of the Banda Arc, Indonesia: combined subduction and assimilation of continental material.", J. Geophys. Res. 98 (1993) 22349– 22366. ##

[51] Elburg M.A., Bergen M.V., Hoogewerff J., Foden J., Vroon P., Zulkarnain I., Nasution A., "Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes", Indonesia. Geochemica et Cosmochimica Acta 66 (2002) 2771–2789. ##

[52] Defant M.J., Drummond M.S., "Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc.", Geology 21 (1993) 547–550. ##

[53] Foley S.F., Barth M.G., Jenner G.A., "Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas.", Geochimica et Cosmochimica Acta 64 (2000) 933–938. ##

[54] Foley S., Tiepolo M., Vannucci R., "Growth of early continental crust controlled by melting of amphibolite in subduction zones.", Nature 417 (2002) 837– 840. ##

[55] Schmidt M.W., Dardon A., Chazot G., Vannucci R., "The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes.", Earth and Planetary Science Letters 226 (2004) 415–432. ##

[56] M. Teklay Kroner, A. Mezger K., "Geochemistry, geochronology and isotope geology of Nakfa intrusive rocks, northern Eritrea: products of a tectonically thickened Neoproterozoic arc crust", Journal of African Earth Sciences, Vol. 33, No. 2, (2001) pp. 283-301. ##