Textural and geochemical significance of chromitites in the Baft ophiolite melange: a petrogenetic approach

Abstract

Gushk chromite mine is one of the largest and the most important chromite mines in Iran that is located in southwest of Kerman Province, 5 km north of Baft city. In this open pit active mine, about 60 tons of chromite is extracted per day. The studied chromitites are podiform type and form discontinuous layers or lenses surrounded by completely serpentinized dunites. The chromites with average Cr2O3 = 62.8% and Cr# = 0.83 are classified as Cr-rich chromitites or as the first grade type chromites in the world. Cr# and Mg# values indicate that the studied chromitites have been crystallized from boninitic magmas, probably in suprasubduction zone setting in a back-arc basin environment. It seems that the Baft chromitite ores have initially been formed in a primary ophiolitic complex within dunitic envelopes. In the next stage, due to serpentinization of the peridotites and ascending of the resulted serpentinite, the studied deposits have been emplaced along the shear zones of the Baft ophiolitic melange en route to the surface.

Keywords


[1] Berberian M., King G. C. P., “Towards a paleogeography and tectonic evolution of Iran”, Canadian Journal of Earth Sciences, 18 (1981) 210-265.

[2] Desmons J., Beccaluva L., “Mid-ocean ridge and island arc affinities in ophiolites from Iran: paleographic implications”, Chemical Geology, 39 (1983) 39-63.

[3] Ghazi A. M., Hassanipak A. A., “Petrology and geochemistry of the Shahr-Babak ophiolite, Central Iran”, Geological Survey of America, Special paper, 349 (2000) 485-497.

[4] Shahabpour J., “Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz”, Journal of Asian Earth Sciences, 24 (2005) 405-417

[5] Agard P., Monie P., Gerber W., Omrani J., Molinaro M., Meyer B., Labrousse L., Vrielynck B., Jolivet L., Yamato P., “Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics”, Journal of.Geophysics Reserchs., (2006) 111: B11401, doi: 10.1029/2005JB004103.

[6] Shafaii Moghadam H., Rahgoshay M., Whitechurch H., Montigny R., “A geochemical scenario for evolution of the Nain-Baft back-arc basin”, Goldschmidt Conference Abstracts, (2007) A920.

[7] Shafaii Moghadam H., Robert J. Stern, Rahgoshay M., “The Dehshir ophiolite (central Iran): Geochemical constraints on the origin and evolution of the Inner Zagros ophiolite belt”, Geological Society of America, 122 (2010) 1516–1547.

[8] Duke J. M., “Magmatic segregation deposits, in Roberts, R. G. and Sheahan, P. A. (eds.), ore deposit models”, Geoscience Canada, Reprint Series 3(1988) 133-143.

[9] Evans A. M., “Ore Geology and Indusrial Minerals: An Introduction”, Blackwell Scientific Publications, (1993) 390 p.

[10] Zhou M. F., Robinson P. T., Malpas J., Li Z., “Podiform chromitites in the Luobusa ophiolite (SouthernTibet): implications for melt-rock interaction and chromite segregation in the upper mantle”, Journal of Petrology, 37 (1996) 3-21.

[11] Dick H. J. B., Bullen T., “Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas”, Contributions to Mineralogy and Petrology 86(1) (1984) 54–76.

[12] Arai S., “Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry”, Mineralogical Magazine, 56 (1992) 173-184.

[13] Tamura A., Arai S., “Harzburgit-dunite-orthopyroxenite suite ophiolite mantle”, Lithos, 90 (2006) 43-56.

[14] Hickey R. L., Frey F. A., “Geochemical characteristics of boninite series volcanics: implications for their source”, Geochimica et Cosmochimica Acta, 46 (1982) 2099–2115.

[15] Matveev S., Ballhaus C., “Role of water in the origin of podiform chromitite deposits”, Earth Planet Science Letters., 203 (2002) 235–243.

[16] Irvine T.N., “Chromian spinel as a petrogenetic indicator. Part II. Petrologic applications”, Canadian Journal of Earth Sciences., 4 (1977) 71–103.

[17] Maurel C., Maurel O., “Etude experimentale de la distribution de l’aluminiun entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: teneur en chrome des spineles”, Bul‌letin de Mineralogie, 105(1982) 197-202.

[18] Kamenetsky V.S., Crawford A.J., Meffre S., “Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks”, Journal of Petrology, 42 (2001) 655–671.

[19] Crawford A. J., Falloon T. J., Green D. H., “Classification, petrogenesis and tectonic setting of boninites”, In: Crawford, A. J. (ed.) Boninites and Related Rocks. London: Unwin Hyman, (1989) 1-49.

[20] Proenza J.A., Ortega-Gutiérrez F., Camprubí A., Tritlla J., Elías-He‌rrera M., Reyes-Salas M., “Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexi‌co): a petrological and mineralogical study”, Journal of South Ame‌rican Earth Sciences., 16 (2004) 649-666.

[21] محمدی ن.، “کانی‌شناسی، لرزه‌خیزی و پتروژنز سرپانتینیت‌های آمیزه رنگین چهارگنبد-گوغر-بافت در استان کرمان”، رساله کارشناسی ارشد، دانشگاه شهید باهنر کرمان، (1389)، 225 صفحه.

[22] Arvin M., Robinson P.T., “The petrogenesis and tectonic setting of lava from Baft ophiolitic mélange, SW of Kerman/Iran”, Canadian Journal of Earth Science., 31 (1994) 824-34.

[23] Plank T., Langmuir C. H., “An evaluation of the global variations in the major element chemistry of arc basalts”, Earth and Planetary Science Letters, 90 (1998) 349–370.

[24] Edwards S.J., Pearce J.A., Freeman J., “New insights concerning the influence of water during the formation of podiform chromitite”, In: Dilek Y., Moores E., Elthon D. and Nicolas A.(eds), “Ophiolites and Oceanic crust : New Insights from field studies and the ocean drilling program”. Geological Society of America, Special Paper, 349 (2002) 139-147.

[25] Jan M.Q., Windley B.F., “Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex Northwestern Pakistan”, Journal of Petrology, 34(1990) 667–715.

[26] Bonavia F.F., Diella V., Ferrario A., “Percambrian podiform chromitites from Kenticha Hill Southern Ethiopia”, Economical Geology, 88 (1993) 198-202.

[27] Bridges J.C., Prichard H.M., Meireles C.A., “Podiform chromitite-bearing ultrabasic rocks from the Bragança massif, Northern Portugal: fragments of island arc mantle?”, Geological Magazine., 132 (1995) 39–49.

[28] Ohara Y., Stern R.J., Ishii T., Yurimoto H., Yamazaki T., “Peridotites from the Mariana Trough: First look at the mantle beneath an active back-arc basin”, Contributions to Mineralogy and Petrology., 143 (2002) 1–18.

[29] Wilson M., “Igneous petrogenesis”, London, U.K., Unwin Hyman, (1989) 466 p.

[30] Fryer P., Taylor B., Langmuir C.H., Hochstaedter A.G., “Petrology and geochemistry of lavas from the Sumisu and Torishima backarc rifts”, Earth and Planetary Science Letters., 100 (1990) 161-178.