The geochemistry of Hasht-Sar plutonic suite; NW-Iran

Abstract

Hasht-Sar Kaleybar mafic, ultramafic and syenitic dykes are surrounded by Majid Abad Formation, Palaeocene age, volcanic deposits. The suite is restricted within the Horand, Mahmud Abad and Mokhtekan thrust and reverse faults. Clinopyroxenites, the oldest unit of the suite, have tholeiitic volcanic arc character and have some similarities with tectonite layer of oceanic crust, like Group A pyroxenites of the Ronda massif, Spain. The surrounding gabbro is the calc-alkaline part of volcanic arc. Clinopyroxenes composition of the two above units, is comparable with oceanic post-cumulates. Quartz and nephelin syenitic dykes, the youngest unit, crop out interior of the mafic-ultramafic rocks. Shoshonitic, I-type and post-collisional affinities of the dykes determined by geochemical studies. Considering the geological position, the Hasht-Sar plutonic suite is probably related to the Secondary Palaeo-Tethys subduction events.  

Keywords


[1] Meherpartou M., Nazer N., Emami M.H., “1:100000 geological map of Kaleybar”, Geological Survey of Iran, (1999), no. 5467.

[2] برزگر ا، پورکرمانی م، مؤید، م، حاجی علی بیگی ح، "تکوین ساختاری زون چین خورده الهیارلو در پهنه البرز غربی"، چهاردهمین همایش انجمن زمین شناسی ایران، دانشگاه ارومیه، (1389).

[3] مؤید م، مجرد م، "تکوین اقیانوس پالئوتتیس دوم در ایران"، یازدهمین همایش انجمن زمین شناسی ایران، دانشگاه فروسی مشهد، (1386).

[4] مؤید م، مجرد م، حسین زاده ق، "براورد دما – فشار و گریزندگی اکسیژن در گابرو – پیروکسنیتهای تازه کند کلیبر؛ با تمرکز بر شیمی بلورها و فعالیت کانیها"، مجله بلورشناسی و کانی شناسی ایران، شماره (3)18، (1389) 396-381.

[5] مجرد م، مؤید م، حسین زاده ق، "گابروی هشت سر کلیبر؛ اثر متاسوماتیسم مرتبط با فرورانش"، مجله زمین شناسی ایران، جهاد دانشگاهی شهید بهشتی (پذیرفته شده)، 1389.

[6] Le Maitre R.W., Baterman P., Dudek A., Keller J., Lameyre Le Bass M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R., Zanettin B., “A classification of igneous rocks and glossary of terms”, Blackwell, Oxford (1989).

[7] Peccerillo A., Taylor S.R., “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, North Turkey”, Contributions to Mineralogy and Petrology, 58 (1976) 63–81.

[8] Sun S. S., McDonough W. F., “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes”, In: Saunders A.D. Norry M.J.(eds), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, l42 (1989) 313-345.

[9] Van der Laan S. R., Arculus R. J., Pearce J. A. & Murton B. J., “Petrography, mineral chemistry, and phase relations of the basement boninite series of site 786, Izu-Bonin forearc”, In: Fryer P., Pearce J. A., Stokking L. B., et al. (eds) Proceedings of the Ocean Drilling Program Scientific Results, 125. College Station, TX: Ocean Drilling Program (1992) 171-201.

[10] Hawkins J. W., Allan J. F., “Petrologic evolution of Lau Basin sites 834 through 839”, In: Hawkins J., Parson L., Allan J., Resig J., Weaver P., editors. Proceedings of the Ocean Drilling Program, Scientific Results, 135. College Station, TX: Ocean Drilling Program (1994) 427-470.

[11] Stakes d. S., Franklin J. M., “Petrology of igneous rocks at Middle Valley, Juan de fuca Ridge, Proceedings of the Ocean Drilling Program”, Scientific Results, Vol. 139, doi:10.2973/odp.proc.sr.139.212 (1994).

[12] Beccaluva L., Maccciotta G., Piccardo G.B., and Zeda O., “Clinopyroxene composition of ophiolite basalts as petrogenetic indicator”, Chemical Geology, 77 (1989) 165-182.

[13] Elthon D., Stewart M., Ross K.D., “Compositional trends of minerals in oceanic cumulates”, Journal of Geophysical Research, 97 (1992) 15189-15199.

[14] Borghini G., Rampone E., Crispini L., De Ferrari R., Godard M., “Origin and emplacement of ultramafic-mafic intrusions in the Erro-Tobbio mantle peridotite, Italy”, Lithos, 94 (2007) 210-229.

[15] Bender J.F., Hodges F.N., Bence A.E.,” Petrogenesis of basalts from the project FAMOUS area: experimental study from 0 to 15 Kbar”, Earth Planetary Sciences Letters, 41 (1978) 277-302.

[16] Wood D. A.,” The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province”, Earth and Planetary Sciences Letters, 50 (1980) 11-30.

[17] Mullen E. D., “MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis”, Earth and Planetary Sciences Letters, 62 (1983) 53-62.

[18] Shervais J. W., “Ti-V plots and petrogenesis of modern and ophiolitic lavas”, Earth and Planetary Sciences Letters, 23 (1982) 319-351.

[19] Meschede M., “A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram”, Chemical Geology, 56 (1986) 207-218.

[20] Muller D., Groves D.I., “Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposites”, Ore Geology Review, 8 (1991) 383-406.

[21] Condie K.C., “Plate tectonics and crustal evolution”, Pergamon Press. (1989) 476p.

[22] Pearce J.A., Harris N.B.W., Tindle A.G., “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks”, Journal of Petrology, 25 (1984) 956-983.

[23] Bodinier J.L, Garrido C.J., Chanefo I., Bruguier O., Gervilla F., “Origin of Pyroxenite-Peridotite VeinedMantle by Refertilization Reactions: Evidence from the Ronda Peridotite (Southern Spain)”, Journal of Petrology, 49 (2008) 999-1025.

[24] Booth-Rea G., Azanon J. M., Martinez-Martinez J. M.,Vidal O., Garcia Duenas V., “Contrasting structural and P-Tevolution of tectonic units in the southeastern Betics: Key for understanding the exhumation of the Alboran Domain HP/LTcrustal rocks (western Mediterranean)”, Tectonics, 24, doi:10.1029/2004TC001640, (2005).

[25] Precigout J., Gueydan F., Gapais D., Garrido C. J., Essaifi A., “Strain localisation in the subcontinental mantleça ductile alternative to the brittle mantle”, Tectonophysics, 445 (2007) 318-336.

[26] Garrido C.J., Bodinier J.L., “Diversity of mafic rocks in the Ronda Peridotite; evidence for pervasive melt-rock reaction during heating subcontinental lithosphere by upwelling asthenosphere”, Journal of Petrology, 40 (1999) 729-754.

[27] McDonough W.F., Frey F.A., “Rare earth elements in upper mantle rocks”, In: Eds, Geochemistry and mineralogy of REE, Review in Mineralogy, 21 (1989) 99-145.

[28] Ross K., Elthon D., “Cumulus and postcumulus crystallization in the ocean crust: major-and trace-element geochemistry of leg 153 gabbroic rock”, In: Ocean Drilling Program, College Srtation, Texas, (1997) 333-350.

[29] Meyer P.S., Dick H.J.B., Thomson G., “Cumulates gabbro from the Southwest Indian Ridge, 54 S-7 E: implication for magmatic processes at a slow spreading ridge”, Contributions to Mineralogy and Petrology, 103 (1989) 44-63.

[30] Pearce J. A., “Sources and setting of granitic rocks”, Episodes, 19 (1996) 120-125.

[31] Rollinson H., “Using Geochemical Data: Evaluation, Presentation, Interpretation”, Longman, Harlow, UK, pp. (1993) 325pp.

[32] Kharbish S., “Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro–diorite suite, central Eastern Desert, Egypt”, Chemie der Erde, 70 (2010) 257–266.











[33] Sun S. S., “Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs”, Phil Trans R Soc, 397 (1980) 409-445.

[34] Orejana D., Villaseca C., Paterson B.A., “Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System”, Lithos, 86 (2006) 167-196.

[35] Nagudi B., Koeberl C., Kurat G., “Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin”, Journal of African Earth Sciences, 36 (2003) 73-87.

[36] Sandeman H.A., Hanmer S., Davis W.J., Ryan J.J., Peterson T.D., “Whole-rock and Nd isotopic geochemistry of Neoarchaean granitoids and their bearing on the evolution of the Central Hearne supracrustal belt, Western Churchill Province, Canada”, Precambrian Research, 134 ( 2004) 143-167.

[37] Bellieni G., Peccerillo A., Poli G., “The Vedrette di Ries cratonic complex: petrological and geochemical data bearing on its genesis”, Contributions to Mineralogy and Petrology, 78 (1981) 145-156.