Petrology of peridotites and volcanic rocks of Surk ophiolitic mélange (Yazd province)

Abstract

The Surk ophiolitic mélange is located at the south west of central Iran and along the Naein-Dehshir-Baft ophiolitic belt. In petrological sequence, peridotites are nominated the undermost part of rock unit, and then gabbros and volcanic rocks are at the following ranks respectively. The predominant peridotitet of this ophiolitic mélange is harzburgite. Lherzolite that is the primitive mantle rock consists of olivine, orthopyroxene, clinopyroxene as major minerals and chromian spinel and amphibole (pargasite) as accessory mineral. Petrographical characteristics and mineral chemistry of these peridotites show the lithology evaluation from lherzolite to harzburgite and dunite ultimately. The average SiO2 and Na2O content of volcanic rocks in the ophiolitic melange are 70 and 5 weight percent respectively. Petrographical investigations and also classification of these volcanics based on major and trace elements and norm calculations show that these rocks are dacite. REE/chondrite normalized diagrams of these volcanic rocks show horizontal to positively sloping patterns, LREEs are lower than HREEs and their La/Yb ratio is lesser than 1; suggest tholeitic nature of their parent magma. Moreover, Hf/Zr, U and Pb contant of these rocks is higher than the content in the Primitive mantle but the Sr, Ti and Y contant is lower. These differences can be caused by melt migration of subducted oceanic lithosphere on mantle peridotites. By melt/rock reactions clinopyroxene dissolution, incongruent melting of orthopyroxene, formation of replacive olivines and SiO2 increasing in ascending melt will occur. All these characteristics propose that the Surk ophiolitic mélange is a Harzburgite Ophiolitic Type (HOT) which is formed at the supra-subduction (back-arc basin) zone.

Keywords


[1] Pearce J.A., Stern R.J., "Origin of back-arc basin magmas: trace element and isotope perspectives", Geophysical Monograph 166 (2006) 63 – 86.

[2] Dilek Y., Furnes H., "Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems", Lithos 113 (2009) 1–20.

[3] Dilek Y., Thy P., "Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc–forearc magmatism in Tethyan subduction factories", Lithos 113 (2009) 68–87.

[4] Rampone E., Piccardo G.B., Hofmann A.W., "Multi - stage melt - rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence", Contributions to Mineralogy and Petrology 156 (2008) 453 – 475.

[5] Niu Y., "Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of mesozoic-cenozoic basaltic volcanism in eastern china", Geological Journal of China University 11 (2005) 9 – 46.

[6] Aldanmaz E., Schmidt M.W., Gourgaud A., Meisel T., "Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes", Lithos 113 (2009) 691-708.

[7] Sintonm J.M., Ford L., Chappell B., McCulloch M.T., "Magma genesis and mantle heterogeneity in the Manus Back-Arc Basin, papua new Guinea", Journal of Petrology 44 (2003) 159-195.

[8] Green N.L., "Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system", Lithos 87 (2006) 23– 49.

[9] Taylor B. F., Martinez F., "Back-arc basin basalt systematics", Earth and Planetary Science Letters 210 (2003) 481–497.

[10] Berberian M., King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 1763-1764.

[11] Torabi Gh., "Chromitite potential in mantle peridotites of the Jandaq ophiolite (central Iran)", Comptes Rendus – Geoscience 341 (2009) 982 – 992.

[12] Shafaii Moghadam H., Whitechurch H., Rahgoshay M., Monsef I., "Significance of Nain - Baft ophiolitic belt (Iran): Short - lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone", Comptes Rendus-Geoscience 341 (2009) 1016 – 1028.

[13] Shafaii Moghadam H., Rahgoshay M., Banitaba A., "Geochemistry and petrogenesis of basaltic flows in the Nain-Dehshir ophiolites", Iranian Journal of Crystallograohy and Mineralogy 16 (2008), 600 – 611.

[14] Mehdipour Ghazi J., Moazzen M., Rahgoshay M., Shafaii Moghadam H., "Mineral chemical composition and geodynamic significance of peridotites from Nain ophiolite, central Iran", Journal of Geodynamics 49 (2010) 261–270.

[15] Pessagno E.A., Ghazi A.M., Kariminia M., Duncan R.A., Hassanipak A.A., "Tectonostratigraphy of the Khoy Complex, northwestern Iran": Stratigraphy, 2 (1), (2005) 49 – 63.

[16] Amidi S. M., "Etude Geologique de Le Region de Natanz - Surk (Central IRAN): Geological Survey of Iran". Report Number 42 (1977) 316 P.

[17] Kelemen P. B., Eiichi K., the Shipboard Scientific Party, 2003, Drilling mantle peridotite along the Mid-Atlantic Ridge from 14°to 16°N. Proceedings ODP Preliminary Report, 209, p. 160.

[18] Vernon R. H., "A practical guide to rock microstructure". Department of Earth and Planetary Sciences (2004) 594 p.

[19] Hey M. H., "A new review of the chlorites". Mineralogical Magazine 30 (1954) 227 p.

[20] Le Maitre R. W., Streckeisen A., Zanettin B., Le Bas M. J., Bonin B., Bateman P., Bellieni G., Dudek A., Schmid R., Sorensen H., Woolley A. R., "Igneous rocks. A classification and glossary of terms: recommendations of the International :union: of Geological Sciences Subcommission of the Systematics of Igneous Rocks". Cambridge University Press, Cambridge (2002) 1-236.

[21] Hastie A. R., Kerr A. C., Pearce J. A., Mitchell S. F., "Classification of altered volcanic island rocks using immobile trace elements: development of the Th-Co discrimination diagram". Journal of Petrology 48 (2007) 2341-2357.

[22] Le Maitre R. W., (ed), "A classification of igneous rocks and glossary of terms." Blackwell, Oxford, (1989) 193 p.

[23] McDonough W. F., Sun S. S., "The composition of the Earth". Chemical Geology 120 (1995) 228 p.

[24] رجبی ث.، "پتروگرافی پریدوتیت های گوشته و سنگ های ولکانیک آمیزه افیولیتی سورک (استان یزد)، پایان نامه کارشناسی ارشد پترولوژی"، گروه زمین شناسی دانشگاه اصفهان (1389) 175 صفحه.

[25] Hellebrand E., Snow J. E., Dick H. J. B., Hoffmann A. W, "Coupled major and trace elements as indicators of extent of melting in mid – ocean ridge peridotites". Nature 410 (2001) 677 - 681.

[26] Dick H. J. B., Bullen T., "Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas". Contributions to Mineralogy and Petrology 86 (1984) 54-76.

[27] Arai S., "Characterization of spinel peridotites by olivine-spinel compositional relationships, Review and Interpretation". Chemical Geology 113 (1994) 191-204.

[28] Johnson K.T.M., Dick H.J.B., Shimizu N., "Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites". Journal of Geophysical Research 95 (1990) 2661–2678.

[29] Jackson I., "The Earth's mantle: composition, structure, and evolution". Cambridge University Press (2000) 592 p.

[30] Kelemen P. B., Hirth G., Shimizu N., Spiegelman M., Dick H. J. B., "A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical transactions". Mathematical Physical and Engineering Sciences 355 (1997) 283-318.

[31] Kubo K, "Dunite formation processes in highly depleted peridotite: case study of the Iwandake peridotite, Hokkaido, Japan". Journal of Petrology, 43 (2002) 423-448.

[32] Zhou M. F., Robinson P. T., Malpas J., Zijin L., "Podiform chromitites in the Luobusa Ophiolite (Southern Tibet): implications for melt– rock interaction and chromite segregation in the upper mantle". Journal of Petrology 37 (1996) 3–21.

[33] Rollinson H. R., "Using geochemical data, Evaluation, Presentation, Interpretation Addison". Wesley Longman, Harlow (2002) 557 p.