Preparation of cobalt-zinc ferrite nanoparticles and investigation of the variation of blocking temperature with substitution of cobalt by zinc in an alternative magnetic field at different frequencies

Abstract

In this research magnetic nanoparticles of cobalt–zinc ferrite (Co1-xZnxFe2O4, x=0, 0.2, 0.4, 0.6, 0.8), have been synthesized by the coprecipitation method, using stable ferric, zinc and cobalt salts with sodium hydroxide, at 80 ˚C. Phase formation and the morphology of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy respectively. Mean crystallite size of the nanoparticles was calculated using Scherrer’s formula and the results show that the mean crystallite size decreased from 13 to 8 nm by increasing x values from 0 to 0.8. The superparamagnetic behavior and dependence of blocking temperature TB on frequency were studied, using AC-susceptibility measurements at the range of 300 Hz to 100 kHz and fitted by Vogel-Fulcher law. According to this law, it was found that there is a strong magnetic interaction between the ferrite nanoparticles.

Keywords


[1] Vaidyanathan G., Sendhilnathan S., Arulmurugan R., "Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles by co-precipitation method," Journal of Magnetism and Magnetic Materials 313 (2007) 293-299.

[2] Gul I. H., Abbasi A. Z., Amin F., Anis-ur-Rehman M., Maqsood A., "Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method," Journal of Magnetism and Magnetic Materials 311 (2007) 494-499.

[3] Peddis D., Mansilla M. V., Morup S., Cannas C., Musinu A., Piccaluga G., D'Orazio F., Lucari F., Fiorani D., "Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles," Journal of Physical Chemistry B 112 (2008) 8507-8513.

[4] Lee S. W., Bae S., Takemura Y., Shim I. B., Kim T. M., Kim J., Lee H. J., Zurn S., Kim C. S., "Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application," Journal of Magnetism and Magnetic Materials 310 (2007) 2868-2870.

[5] Kashevsky B. E., Agabekov V. E., Kashevsky S. B., Kekalo K. A., Manina E. Y., Prokhorov I. V., Ulashchik V. S., "Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia," Particuology 6 (2008) 322-333.

[6] Cullity B. D., Graham C. D., Introduction to Magnetic Materials (John Wiley & sons, New Jersey, 2009).

[7] Costa A. C. F. M., Morelli M. R., Kiminami R. H. G. A., "Microstructure and magnetic properties of Ni1–xZnxFe2O4 synthesized by combustion reaction," Journal of Materials Science 42 (2007) 779-783.

[8] Giri J., Sriharsha T., Bahadur D., "Optimization of parameters for the synthesis of nano-sized Co1-xZnxFe2O4, by microwave refluxing," Journal of Materials Chemistry 14 (2004) 875-880.

[9] Lopez J. L., Pfannes H. D., Paniago R., Sinnecker J. P., Novak M. A., "Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles," Journal of Magnetism and Magnetic Materials 320 (2008) E327-E330.

[10] Tadic M., Markovic D., Spasojevic V., Kusigerski V., Remskar M., Pirnat J., Jaglicic Z., "Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix," Journal of Alloys and Compounds 441 (2007) 291-296.

[11] Cullity B. D., Elements of X-Ray Diffraction (Addison-Wesley, 1956).

[12] Wohlfarth E. P., Ferromagnetic Materials (Elsevier Science publishers, North-Holland physics Publishing, Amesterdam, 1982).

[13] Smit J., Wijn H. P. J., Ferrites (Philips Technical Library, Eindhoven, 1959).

[14] Haque M. M., Huq M., Hakim M. A., "Effect of Zn2+ substitution on the magnetic properties of Mg1−xZnxFe2O4 ferrites," Physica B 404 (2009) 3915-3921.

[15] Kaldis E., Current Topics in Materials Science (North-Holland Publishing, Amsterdam, 1982).

[16] Arulmurugan R., Jeyadevan B., Vaidyanathan G., Sendhilnathan S., "Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-pecipitation," Journal of Magnetism and Magnetic Materials 288 (2005) 470-477.





[17] Pandya P. B., Joshi H. H., Kulkarni R. G., "Bulk magnetic properties of Co-Zn ferrites prepared by the coprecipitation method," Journal of Materials Science 26 (1991) 5509-5512.

[18] Goldman A., Modem Ferrite Technology (Springer Science+Business Media, New York, 2006).

[19] Smit J., Magnetic Properties of Materials (McGraw-Hill, 1971).

[20] Mazen S. A., Mansour S. F., Zaki H. M, "Some physical and magnetic properties of Mg-Zn ferrite," Crystal Research and Technology 38 (2003) 471-478.

[21] Kassabova-Zhetcheva V. D., Pavlova L. P., Samuneva B. I., Cherkezova-Zheleva Z. P., Mitov I. G., Mikhov M. T., "Characterization of superparamagnetic MgxZn1-xFe2O4 powders," Central European Journal of Chemistry 5 (2007) 107-117.

[22] Arulmurugan R., Vaidyanathan G., Sendhilnathan S., Jeyadevan B., "Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties," Journal of Magnetism and Magnetic Materials 298 (2006) 83-94.

[23] Dormann J. L., Fiorani D., Cherkaoui R., Tronc E., Lucari F., D'Orazio F., Spinu L., Nogues M., Kachkachi H., Jolivet J. P., "From pure superparamagnetism to glass collective state in gamma-Fe2O3 nanoparticle assemblies," Journal of Magnetism and Magnetic Materials 203 (1999) 23-27.

[24] Sharma S. K., Kumar R., Kumar S., Kumar V. V. S., Knobel M., Reddy V. R., Banerjee A., Singh M., "Magnetic study of Mg0.95Mn0.05Fe2O4 ferrite nanoparticles," Solid State Communications 141 (2007) 203-208.

[25] Dutta P., Pal S., Seehra M. S., Shah N., Huffman G. P., "Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles," Journal of Applied Physics 105 (2009) 07B501.

[26] Ibusuki T., Kojima S., Kitakami O., Shimada Y., "Magnetic anisotropy and behaviors of nanoparticles," IEEE Transations on Magnetics 37 (2001) 2223-2225.