Factors controlling the formation of silica and pyrite minerals in skeletal fragments in the Shishtu 2 Formation (Early Carboniferous), at Howz-e-Dorah area, southeast of Tabas

Abstract

The (Early Carboniferous) Shishtu 2 Formation at the study area is composed of a shallowing upward sequence. Skeletal packstones consist of crinoids, brachiopods, bryozoans, trilobites, corals and rare foraminiferas. The carbonates of this formation have undergone a complex diagenetic history and the most diagenetic events are silicification and pyritization. The complexity of silicification in these limestones is further demonstrated due to selectivity of silicification of different faunas. Based on morphology, four fabric types are distinguished in silica including microcrystalline quartz, spherulitic chalcedony and slightly megaquartz and euhedral quartz. The observed correlation between skeletal fragments and quartz replacement types (QRT) shows that skeleton microstructure may control QRT. The silicification of the skeletal grains in this study occurred along thin solution films where skeletal calcite dissolved and silica precipitated. The brachiopods, corals and crinoids are the most susceptible organisms to silicification. The presence of impurity of Mg2+ in the composition of skeletal grains (e.g., brachiopods and crinoids) may be the controlling factor for their susceptibility for silicification. Diagenetic pyrite in the limestone of the Carboniferous in this area exhibit as euhedral pyrite which occurs as singular euhedral crystals. These may occur after the death of faunas and during burial diagenesis. This process is strongly dependent on the redox potential (dysaerobia to anaerobia) and availability of the required elemental ingredients (Fe and S) in the burial realm.

Keywords


[1] خانه باد م.، موسوی حرمی ر.، محبوبی ا.، نجفی م، محمودی قرایی، م. ح.، "ساقه های کرینوئیدی رسوبات کربونیفر، نشان دهنده یک محیط رمپ کربناته، ناحیه حوض دو راه – جنوب شرق طبس" ، سومین همایش انجمن دیرینه شناسی ایران، دانشگاه فردوسی مشهد، (1388) ص 83-86.

[2] علوی نائینی م.، 1372، "چینه شناسی پالئوزوئیک ایران" ، طرح تدوین کتاب زمین شناسی ایران، سازمان زمین شناسی و اکتشافات معدنی کشور، (1372) 492ص.

[3] Rutner A., Nabavi M. H., Alavi M., "Geology of the Ozbak-Kuh Mountains (Tabas area, East Iran)" , Geological Survey of Iran, (1960) 133.

[4] Stocklin J., Eftekhar-nezhad J., Hushamand-Zadeh A., 1991, "Geology of the Shotori Range (Tabas area, East Iran)" , Geological Survey of Iran Report No. 3 (1991) 69.

[5] Maliva R., Siever R., "Mechanisms and controls of silicification of fossils in limestones ", Journal of Geology 96 (1988) 387-398.

[6] Maliva R.G., "Silicification in the Belt Supergroup (Mesoproterozoic), Glacier National Park, Montana, USA", Sedimentology 48 (2001) 887–896.

[7] Pope M., "Cherty carbonate facies of the Montoya Group, southern New Mexico and western Texas and its regional correlatives a record of Late Ordovician paleoceanography on southern Laurentia", Palaeogeography, Palaeoclimatology, Palaeoecology 210 (2004) 367–384.

[8] Tobin K. J., "A survey of Paleozoic microbial fossils in chert" , Sedimentary Geology 168 (2004) 7–107.

[9] Schmitt J. G., Boyd D. W., "Pattern of silicification in Permian pelecypods and brachiopods from Wyoming" , Journal of Sedimentary Petrology (1981) 1297-1308.

[10] Bullen S. B., Sibley D. F., "Dolomite selectivity and mimic replacement" , Geology 12 (1984) 655-658.

[11] Popp B. N., Anderson J. F., Sandberg P. A., "Textural, elemental and isotopic variation among constituents in Middle Devonian limestones, North America" , Journal of Sedimentary Petrology 54 (1986), 715-727.

[12] Bathurst R. G. C., "Carbonate sediments and their diagenesis" , Second enlarged edition, Elsevier Scientific Publishing Company, New York, (1975) 658.

[13] Hein J. R., Karl S. M., "Comparison between Open Ocean and continental margin chert sequences" , In: A. Iijima and Hein, J. R. and Siever, R. eds. Siliceous deposits in the Pacific region, Elsevier Sci. Pub. Co., Amsterdam, (1983) 25-43.

[14] Daley R. L., Boyd D. W., "The role of skeletal microstructure during Selective Silicification of Brachiopods ", Journal of Sedimentary Research 66, 1 (1996) 155-162.

[15] Adams A.E., Mackenzie W.S., Guilford C., 1984, "Atlas of sedimentary rocks under the microscope" , Longman (1984) 104.

[16] Berner R.A., "Sedimentary pyrite formation" , American Journal of Science 268 (1970) 1–23.

[17] Lovley D.R., "Dissimilatory Fe (III) and Mn (IV) reduction" , Microbiological Reviews 55 (1991) 259–287.

[18] Sweeney R.E., Kaplan I.R., "Pyrite framboid formation: laboratory synthesis and marine sediments" , Economic Geology 68 (1973) 618–634.

[19] Passier H. F., Middelburg J. J., de Lange G. J., Bottcher M.E., "Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel", Geology 25 (1997) 519–522.

[20] Blatt H., Middleton G. V., Murray, R. G., "Origin of sedimentary rocks" , (2nd edition), Prentice-Hall Inc. New Jersey, (1980) 782.

[21] Wang Q., Morse J. W., "Pyrite formation under conditions approximating those in anoxic sediments I. Pathways and morphology" , Marine Chemistry 52 (1996) 99–121.

[22] Rickard D., "Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125ºC: the rate equation" , Geochimica et Cosmochimica Acta 61 (1997), 115–134.

[23]Howarth R. W., "Pyrite: Its rapid formation in a salt marsh and its importance to ecosystem metabolism" , Science 203 (1979), 49-51.

[24] Raiswell R., Berner R. A., "Pyrite formation in euxinic and semi-euxinic sediments" American Journal of Science 285 (1985) 710-724.

[25] Schmitt J. G., "Description and interpretation of silicified skeletal material from the Park City Formation (Permian) of Wyoming" , M.S. thesis, University of Wyoming, Laramie, (1979) 84