The Emarat and Muchan sedimentary rock-hosted stratabound Zn-Pb deposits: New data and genetic implications

Abstract

The Emarat and Muchan zinc-lead ore deposits are located in southwest of Arak within the middle part of the Malayer-Esfahan belt. These deposits have formed as stratabound within carbonate strata of Lower Cretaceous. Mineralization in these deposits is mainly open space filling, which consists of sphalerite, galena, pyrite and minor quantities of chalcopyrite associated with host rock silicification. The most abundant sulfide mineral is sphalerite, which occurs in two generations. Galena as an accessory mineral has been formed during and after formation of sphalerite. Based on textural evidence, silicification occurs in two separate stages. First, microcrystalline quartz replaces nearly all the original carbonate host rock. During the second stage, the vugs and fissures of the silicifed host rock were filled with macrocrystalline quartz associated with mineralization. The sulfur isotopic data indicated the δ34S values of sulfide minerals varies from +4.8 to +11.8 per mil. Based on these results, the Lower Cretaceous seawater acted most likely as the source of sulfide mineralization. The isotopic temperatures from two sphalerite-galena pairs at Emarat deposit varied from 121.1˚C in stage I to 112.8˚C in stage II, which are lower than the isotopic temperature of the Muchan deposit (134.3˚C). Combination of geological, mineralogical and sulfur isotope results suggest that connate water, metals and silica have been derived from diagenesis of Jurassic shales and sandstones. Furthermore, thermochemical sulfate reduction, interaction of the ore fluids with the host rock, and cooling were proposed to be the main ore depositional mechanisms.

Keywords


[1] رحیم پور بناب ح.، "بررسی کانسار‌های سرب و روی ناحیه اراک"، پایان نامه کارشناسی ارشد، دانشگاه تهران (1370) 185 ص.

[2] قربانی م.، تاجبخش پ.، خویی ن.، " کانسارهای سرب و روی در ایران"، سازمان زمین‌شناسی و معدنی کشور (1379) 512 ص.

[3] Momenzadeh M., Shafighi S., Rastad E., Amstutz G.C., " The Ahangaran Lead-Silvar deposit, SE-Malayer, west central Iran", Mineralium Deposita 3 (1979) 323-341.

[4] Ghazban F., Mcnutt R.H., Schwarcz H.P., "Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh Distrrict, Esfahan Area, West-Central Iran", Economic Geology 89 (1994) 1262-1278.

[5] علی‌آبادی م.ع.، "بررسی زمین شیمیایی، کانی‌شناختی و منشاء سرب– نقره راونج دلیجان"، پایان نامه کارشناسی ارشد، دانشگاه شیراز (1379) 207 ص.

[6] آدابی م.ح.، جمالیان م.، "شناسایی ترکیب کانی‌شناسی اولیه و نحوه کانسار‌سازی در کربنات‌های کانسار رباط (خمین– اراک)"، فصلنامه علوم زمین، شماره 66 (1386) ص 2- 23.

[7] فرجی ک.، "طرح بهره برداری از کانسار سرب و روی عمارت"، گزارش شرکت صنعتی و معدنی شاهین (1387) 30 ص.

[8] کریم‌زاده ع.ر.، "بررسی تیپ، ارتباط کانی‌شناسی، ژئوشیمیایی و ژنز احتمالی کانسار سرب و روی عمارت"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران (1371) 304 ص.

[9] ونایی م.، "ویژگی‌های ساختی، بافتی و ژئوشیمیایی کانسار سرب و روی عمارت– اراک"، پایان نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان (1377) 168 ص.

[10] احیا ف.، " ژئوشیمی و منشاء کانسار‌های سرب و روی عمارت و باباقله، جنوب اراک"، پایان نامه دکتری دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، (1387) 178 ص.

[11] Ueda A., Krouse H.R., "Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses", Geochemical Journal 20 (1986) 209–212.

[12] Ohmoto H., Goldhaber M.B., "Sulphur and carbon isotopes", In: Barnes H.L. (ed) Geochemistry of hydrothermal ore deposits, third ed. John Wiley & Sons Ltd (1997) 517– 611.

[13] آقا نباتی ع.، "زمین‌شناسی ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور (1383) 606 ص.

[14] Ghalamghash J., Nedelec A., Bellon H., Vousoughi Abedini M., Bouchez J.L., "The Urumieh plutonic complex (NW Iran): A record of the geodynamic evolution of the Sanandaj–Sirjan zone during Cretaceous times – Part I: Petrogenesis and K/Ar dating", Journal of Asian Earth Sciences 35 (2009) 401– 415.

[15] Mohajjel M., Fergusson C.L., Sahandic M.R., "Cretaceous–Tertiary convergence and continental collision Sanandaj–Sirjan Zone, western Iran", Journal of Asian Earth Sciences 21 (2003) 397– 412.

[16] Ghasemi A., Talbot C.J., "A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran)", Journal of Asian Earth Sciences 26 (2006) 683–693.

[17] Momenzadeh M., "Stratabound lead–zinc ores in the Lower Cretaceous and Jurassic sediments in the Malayer–Esfahan district (west central Iran), lithology, metal content, zonation and genesis", Ph.D. Thesis, Heidelberg University (1976) 300.

[18] Thiele O., Alavi M., Assefi A., Hushmand-zadeh A., Seyed-Emami K., Zahedi M., "Explantory text of the Golpaygan quadrangle map no. E7. Scale 1:250000", Geological Survey of Iran (1968) 24.

[19] سهندی م.، حسینی دوست س.ج.، رادفر ج.، محجل م.، "نقشه زمین‌شناسی 1:100000 شازند و گزارش آن"، سازمان زمین‌شناسی و اکتشافات معدنی کشور (1385).

[20] Leach D.L., Sangster D.F., Kelley K.D., Large R.R., Garven G., Allen C.R., Gutzmer J., Walters S., "Sediment-hosted lead-zinc deposits: a global perspective", In: Hedenquist J.W., Thompson J. F.H., Goldfarb R.J., Richards J.P. (eds) Economic Geology 100th Anniversary, Society of Economic Geology Inc (2005) 561- 607.

[21] Lovering T.G., "The origin of jasperoid in limestone", Economic Geology 57 (1962) 861-889.

[22] تاکر م.، ترجمه موسوی حرمی ر.، محبوبی ا.، "سنگ‌شناسی رسوبی"، جهاد دانشگاهی مشهد (1383) 482 ص.

[23] Anderson G.M., Garven G., "Sulfate-sulfide-carbonate associationins Mississipp Valley-type lead-zinc deposits", Economic Geology 82 (1987) 482-488.

[24] Anderson G.M., "Some geochemical aspects of sulphide precipitation in carbonate rocks", In: Kisvarsanyi G., Grant S.K., Pratt W.P., Keonig J.W. (eds) International conference on Mississippi Valley type lead-zinc deposits Proceedings volume: Rolla, University of Missouri-Rolla Press (1983) 61-76.

[25] Powell T.G., Macqueen R.W., "Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point, Canada", Science 224 (1984) 63–66.

[26] Qing H., Mountjoy E.W., "Origin of Dissolution Vugs, Caverns, and Breccias in the Middle Devonian Presqu'ile Barrier, Host of Pine Point Mississippi Valley-Type Deposits", Economic Geology 89 (1994) 858-876.

[27] Machel H.G., "Saddle dolomite as a by-product of chemical compaction and thermo-chemical sulfate reduction", Geology 15 (1987) 936-940.

[28] Hutchcon I., Abercrombie H., "Carbon dioxide in clastic rocks and silicate hydrolysis" Geology 18 (1990) 541-544.

[29] Hutchcon I., "Sources of CO2, organic acids and H2S during diagenesis and their influence on carbonate dissolution, in Subsurface dissolution porosity in carbonates-recognition, causes and implications", American Association of Petroleum Geologists and Canadian Society of Petroleum Geologists Short Course Notes, part 2 (1992) 20.

[30] Plumlee G.S., Leach D.L., Hofstra A.H., Landis G.P., Rowan E.I., Viets J.G., "Chemical reaction path modeling of ore deposition in Mississippi valley-type Pb-Zn deposits of the Ozark region, U.S. mid-continent", Economic Geology 89 (1994) 1361-1383.

[31] Corbella M., Ayora C., Cardellach E., "Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits", Mineralium Deposita 39 (2004) 344-357.

[32] Craige J.R., Vaughan D.J., "Ore microscopy and ore petrography", John Wiley & Sons Ltd (1981) 412.

[33] Hutchison M.N., Scott S.D., "Sphalerite Geobarometry in the Cu-Fe-Zn-S system", Economic Geology 76 (1981) 143- 153.

[34] Velasco F., Herrero J.M., Yusta I., Alonso J.A., Seebold I., Leach D., "Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain", Economic Geology 98 (2003) 1371–1396.

[35] Grootenboer J., SChwarcz H.P., "Exprimentally determined sulfur isotope fractions between sulfide minerals", Earth and Plantary Science Letters 7 (1969) 162-166.

[36] Bachinski D.J., "Bond Strength and sulfur isotopic fractionation in coexisting sulfides", Economic Geology 64 (1969) 56–65.

[37] Ladd M.F.C., Lee W.H., "Lattice energies and related topics", Progress in Solid State Chemistry 1 (1964) 37- 82.

[38] Anderson I.K., Ashton J.H., Boyce A.J., Fallick A.E., Russell M.J., "Ore depositional processes in the Navan Zn-Pb Deposit, Ireland", Economic Geology 93 (1998) 535–563.

[39] Stanton R.L., Rafter T.A., "Sulfur isotope in co-existing galena and sphalerite from Broken Hill, New South Wales", Economic Geology 62 (1967) 1088-1091.

[40] Ohmoto H., "Systematics of sulfur and carbon isotopes in hydrothermalore deposits", Economic Geology 67 (1972) 551–578.

[41] Rye O.R., Ohmoto H., "Sulfur and carbon isotopes and ore genesis: a review", Economic Geology 69 (1974) 826–842.

[42] Gomes F.F., Both R.A., Mangas, J., Arribas A., "Metallogensis of Zn-Pb carbonate-hosted mineralization in the Southeastern Region of the Picosde Europe (Central Northern Spain) Province: geologic, fluid inclusion, and stable isotope studies", Economic Geology 95 (2000) 19-40.

[43] Paytan A., Kastner M., Campbell D., Thiemens M.H., "Seawater sulfur isotope fluctuations in the Cretaceous", Science 304 (2004) 1663–1665.

[44] Hofes J., "Stable isotope geochemistry", 5th ed. Berlin, Springer-verlage (2004) 244.

[45] Orr W.L., "Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation study of Big Horn basin Palaeozoic oils", American Association of Petroleum Geologists Bulletin 58 (1974) 2295–2318.

[46] Qrgensen B.B., Isaksen M.F., Jannasch H.W., "Bactrial sulfat reduction obove 100°C in deep-see hydrothermal vent sediment", Scince 258 (1992) 1756-1757.

[47] Ohmoto H., Rye R.O., "Isotopes of sulphur and carbon", In: Barnes H.L. (ed) Geochemistry of Hydrothermal Ore Deposits, second ed. John Wiley & Sons Ltd (1979) 509–567.

[48] Sasaki A., Krouse, H.R., "Sulfur isotopes and the pine point lead–zinc Mineralization", Economic Geology 64 (1969) 718–730.

[49] Sshwarez H.P., Burnie S.W., "Influence of sedimentary environment on sulfur isotope ratios inclastic rock: a rewiew", Mineralium deposita 8 (1973) 264-277.

[50] Basuki N.I., Taylor B.E., Spooner E.T.C., "Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru", Economic Geology 103(2008) 783–799.

[51] Machel H.G., Krouse, H.R., Sassen, R., "Products and distinguishing criteria of bacterial and thermochemical sulfate reduction", Applied Geochemistry 10 (1995) 373–389.

[52] Garven G., "The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada sedimentary basin", Geology 80 (1985) 307- 324.

[53] Oliver J., "Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena", Geology 14 (1986) 99-102.

[54] Bradle D.C., Leach D.L., "Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands", Mineralium Deposita 38 (2003) 652–667.

[55] Jackson S.A., Beales F.W., "An aspect of sedimentary basine volution: The concentration of Mississippi Valley-type ores during the late stages of diagenesis", Canadian Petroleum Geology Bulltin 15 (1967) 383-433.

[56] Bethke C.M., "A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins", Journal of Geophysical Research 80 (1985) 6817-6828.

[57] Morrow D., "Regional subsurface dolomitization: Models and constraints", Geoscience Canada 25 (1998) 57- 70.

[58] Coveney R.M., Glascock M.D., "A review of the origins of the metal rich Pennsylvanian black shales, central USA, with an inferred role for basinal brines", Applied Geochemistry 4 (1989) 317- 367.

[59] Hanor J.S., "The sedimentary genesis of hydrothermal fluids", In: Barnes H.L. (ed) Geochemistry of Hydrothermal Ore Deposits, second ed. John Wiley & Sons Ltd (1979) 137- 142.

[60] Ehya F., Lotfi M., Rasa I., "Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study", Journal of Asian Earth Sciences 37 (2010) 186–194.

[61] Garven G., Raffensperger J.P., "Hydrogeology and Geochemistry of Ore Genesis in Sedimentary Basins", In: Barnes H.L. (ed) Geochemistry of hydrothermal ore deposits, third ed. John Wiley & Sons Ltd (1997) 125– 190.