Study of the (Bi2Te3)0.25 (Sb2Te3)0.75 crystal structure modification with excess Te by AFM, EBSD and XRD and the figure of merit innovation

Abstract

(Bi2Te3)0.25(Sb2Te3)0.75 solid solution is a p type thermoelectric compound with optimum efficiency among the (Bi2Te3)x (Sb2Te3)1-x compounds with variable x. Increment of Bi2Te3 segment in the Bi-Sb-Te system decrease in hole concentration, which result in carriers transport tuning, an increment of Seebeck coefficient and decrement of electrical and thermal conductivities. An excess of Tellurium up to 4wt% further elevates the thermoelectric efficiency (η), thus resulting in an increase in the figure of merit. Structural characterizations of this compound in the absence and presence of added Te were carried out by means of X-Ray diffraction measurement, electron backscattering diffraction and atomic force microscopy. Detailed analyses carriers transport behavior reveal the intrinsic structures formation and minimum defects during crystallization resulted in the excess of Te. The analysis show a maximum figure of merit at 3wt% excess Te.

Keywords


[1] Ioffe A. F., "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, 1957. P. 39.

[2] Goldsmid H. J., "Electronic Refrigeration", Piton, London ,1986.

[3] Ha H. P., Cho Y. W., Byun J. Y., Shim J. D., Proc. 12th Int. Conf. Thermoelectrics, Yokohama, Japan, 1993, p. 105.

[4] Ivanova L. D., Granatkina Yu. V., Polikarpova N. V., Smirnova E. I., Inorg. Mater., 33 (1997), 558.

[5] Zakeri M., Allahkarami M., Kavei Gh., Khanmohammadian A., Rahimipour M.R., J. Mater. Sci., 43 (2008), 1638.

[6] Zakeri M., Allahkarami M., Kavei Gh., Khanmohammadian A., Rahimipour M.R., Journal of Materials Processing Technology, 209 (2009), 96.

[7] Seo J., Park K., Lee D., Lee C., Scr. Mater., 38 (1998), 477.

[8] Hyun D. B., Hwang J. S., Shim J. D., Oh T. S., J. Mater. Sci., 36 (2001), 1285.

[9] Tritt T. M., Science, 283 (1999), 804.

[10] Smith M. J., Knight R. J., Spencer C. W., J. Appl. Phys., 33 (1962), 2186.

[11] Stordeur M., CRC Handbook of Thermoelectric,(ed. D.M. Rowe), (1995), CRC Press Inc.239-255.

[12] Kavei G., Kavei D., Journal of thermoelectricity, No. 2, (2011), 26.

[13] Jiang J., Chen L., Bai S., Yao Q., Wang Q., Journal of Crystal Growth, 277 (2005), 258.

[14] Yang J., Aizawa T., Yamamoto A., Ohta T., J. Alloys and Compounds, 309 (2000), 225.

[15] Heon P.H., Young W.C., Ji Y.B., Jae D.S., J. Phys. Chem. Solids, 55 (1994), 1233.

[16] Kim H.C., Oh T.S., Hyun D.B., J. Phys. Chem. Solids, 61 (2000), 743.

[17] Smirous K. and Stourac L., Z. Naturforsch. A, 14 (1959), 848.

[18] Rosi F. D., Hockings E. F. and Lindenblad N. E., RCA Rev., 22 (1961),82.

[19]Xi’an Fan, Yang J., Zhu W., Bao S., Duan X., Zhang Q., Journal of Alloys and Compounds, Vol. 448 Issues 1-2 (2008), 308.

[20] Scherrer H., Hammou B. and Scherrer S., Phys, Lett. A,130 (1988),161.

[21] Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogen T., Polychroniadis E.K., Kanatzidis M.G., Science, 303 (2004), 818.

[21] کاوه ای قاسم، قهرمان اف کامیل، کنفرانس بلور شناسی، دانشگاه تبریز، ( 1389)، 1843.

[23] Birdi K.S., Scanning Probe Microscopes, Applications in Science and Technology, (2003),

CRC Press, Boca Raton, London.

[24] Kavei G., Zare Y., Seyyedi A., Journal of Thermoelectricity, No.2 (2008), 57.

[25] Petrov A. V., "Thermoelectric properties of semiconductors (ed. Kutasov V. A.)", (1964) (New York: Consultants Bureau), 17.

[26] Alam M. N., Blackman M., Pashley D. W., High-angle Kikuchi Patterns, Proc. Roy. Soc., 221 (1954), 224.

[27] Baba-Kishi K. Z., Dingley D. J.,J. Appl. Cryst, 22 (1989) 189.

[28] Kavei G., Karami M. A., Eur. Phys. J. Appl. Phys., 42 (2008) 67.

[29] Uemura K., Nishida I., "Thermoelectric Semiconductors and their Applications, Nikkan Kogyo Shinbun Press", Tokyo, 1988, p. 145.

[30] Seo J., Park K., Lee D., Lee C., Scripta Mater., 38 (1998) 477.

[31] Iwaisoko Y., Aizawa T., Yamamoto A., Ohta T., Jpn. J. Powder Metall., 45, 10 (1998) 958.