Nature of Chromite parent magma In Sabzevar ophiolite (North-East of Iran)

Abstract

Significance of chromite, as the unique source for chromium, a metal with key role in industry, has inspired many geologists to investigate its genesis and natural distribution as an important contribution to its exploration in many parts of the world. To do this, geochemistry of chromite, which is considered to be the reflection of the nature of its parent magma and the geotectonic setting in which it is generated, is extensively used by many researchers. To reveal the nature of chromite’s parent magma, its chemical composition is used as a petrogenetic indicator. In this regard many authors have classified chromite deposits as either high-Al (Al2O3 ≥ 25 wt %) or high-Cr (Cr2O3 ≥ 45 to 60 wt %) and have demonstrated that Al-rich chromites are generated from tholiitic and Cr-rich ones from Mg-rich boninitic magmas, two melts generated in distinct and different geotectonic setting. In this study on the basis of geochemistry of chromite samples from three nearby mining districts in Sabzevar Ophiolite Range, in the North-East of Iran, the nature of chromite parent magma and its geotectonic setting is investigated. Chromite samples are analyzed by EPMA method. The layered chromitite bodies, embedded in serpenitnized dunite, are displayed to belong to high-Cr deposits. Considering high Cr# (86-88), moderate Mg# (44-51), low TiO2 content (0.1-0.2 wt %) and other geochemical features of chromite, the parent magma dominantly accords with a high Mg# boninitic melt. According to the results of the previous works and petrography, geochemistry (especially Cr#, Mg#, Fe+3 and TiO2 contents) and field observations represented in this work, the chromitites must be generated in a suprasubduction zone setting. Sea floor hydrothermal processes have probably caused especially, the Mg# not to be as high as expected.

Keywords


[1] Irvine T. N., “Chromian spinel as a petrogenetic indicator; Part 2, petrologic applications”, Canadian Journal of Earth Sciences 4 (1967) 71-103.

[2] Dick H. J. B. Bullen T., “Chromian spinel as a petrogeneticindicator in abyssal and alpine typeperidotites and spatially associated lavas”, Contributions to Mineralogy and Petrology, 86 (1984) 54-76.

[3] Arai S., “Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation”, Chemical Geology 113 (1994a) 191-204.

[4] Leblanc M., Violette J. F., “Distribution of Al-rich and Cr-rich chromite pods in ophiolites”, Economic Geology 78 (1983) 293-301.

[5] Garuti G., Pushkarev E. V., Zaccarini F., Cabella R., Anikina E., “Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia)”, Miner Deposita 38 (2003) 312–326.

[6] Irvine T. N., “Origin of chromitite layers in the Muskox intrusion and other stratiform introsions. II: a new interpretation”, Geology 5 (1977) 273-277.

[7] Zhou M. F., Robinson P.T., “High-Cr and High-Al chromitites western China: relationship to partial melting and melt/rock interaction in the upper mantle”, International Geological Reviews 36 (1994) 678-686.

[8] Hock M., Friedrich G., Pluer W. L., Wichowski A., “Refractory and metallurgical-type chromite ores. Zarnbale ophiolite, Luzon, Phillipines”, Mineralium Deposita 21 (1986) 190-199.

[9] Yumul Jr G. P., Balce G. R., “supra-subduction zone ophiolites as favorable hosts for chromitite, platinum and massive sulfide deposits”, Journal of Southeast Asian Earth Sciences 10 (1994) 65-79.

[10] Robinson P.T., Zhou M. F., Malpas J. Bai W. J., “Podiform Chromitites: Their composition, origin and environment of formation”, Episodes 20 (1997) 247-252.

[11] Alavi M.,. "Tectonic Map of the Middle East.", Geological Survey of Iran, Scale 1:5,000,000, 1 Sheet. (1991).

[12] Arvin M., Robinson P.T., "The petrogenesis and tectonic setting of lavas from the Baft Ophiolitic Melange", southwest of Kerman, Iran. Canadian Journal of Earth Sciences 31 (1994) 824 – 834.

[13] Takin M., “Iranian geology and continental drift in the Middle East”, Nature 235 (1972) 147-150.

[14] Stocklin J., “Possible ancient continental margins in Iran. In: Burke, C.A., Drake, C.L. (Eds.), the Geology of Continental Margins”, Springer, New York (1974) 873-887.

[15] McCall G. J. H., “The geotectonic history of the Makran and adjacent areas of southern Iran”, Journal of Asian Earth Sciences 15 (1997) 517-531.

[16] Lensch G., Mihm A., Alavi-Tehrani N., “Major element geochemistry of ophiolites north of Sabzevar (Iran)”, - n. jb. Geol, palaont. mh., 7 (1979) 415-447.

[17] Alavi-Tehrani N., “Geology and petrography in the ophiolite range NE Sabzevar (Khorasan/Iran) with special regard to metamorphism and genetic relations in an ophiolite suite, Doctorate degree thesis”, univ, Saarbrucken (1976)147 p.

[18] Noghreyan M. K., “Evolution geochemique, mineralogique, et structure dun edifice, ophiolitique singulier: la massif de Sabzevar”, Doctoral degree thesis, 1982.

[19] Baroz F., Macaudiere J., Montigny R., Noghreyan M., Ohnenstetter M., Rocci G., “Ophiolites and related formations in the central part of the Sabzevar range (Iran) and possible geotectonic reconstructions”, report 51, 1983, Geological Survey.

[20] Shojaat B., Hassanipaka A.A., Mobasher K., Ghazi A.M., “Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran”, Journal of Asian Earth Sciences 21 (2003) 1053–1067.

[21] Rossetti F., Nasrabady M., Vignaroli G., Theye T., Gerdes A., Razavi M. H., Moin Vaziri H., “Early Cretaceous amphibolite dehydratation melting preserved within the Tertiary Sabzevar ophiolitic suture (NE Iran): significance for the closure of the Alpine Tethyan oceans in central Iran”, Geophysical Research Abstracts 12 EGU (2010) 3562.

[22] Cabella R., Garuti G., Oddone M., Zaccarini F., “Platinum-Group Element Geochemistry in Chromitite and related rocks of the Bracco Gabbro Complex (Lingurian Ophiolite, Italy)”, 9th international platinum symposium, Montana 2002.

[23] Zhou M. F., Kerrich R., “Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe”, Canadian Mineralogist 30 (1992) 303-317.

[24] Jan M. Q. Windley B. F., “Chromian spinel–silicate chemistry in ultramafic rocks of the Jijal Complex, northwest Pakistan”, Journal of Petrology 31 (1990) 667-715.

[25] Arai S., “Chemistry of chromian spinels in volcanic rocks as a potential guide to magma chemistry, Mineral”. Mag. 56 (1992) 173-184.

[26] Auge T., “Chromite deposits in the northern Oman ophiolite: Mineralogical constraints, Mineralium Deposita”, 22 (1987) l-10.

[27] Zhou M.F., Malpas J., Robinson P.T., Sun M., Li J.W., “Crystallization of podiform chromitites from silicate mag-mas and the formation of nodular textures”, Res. Geol. 51 (2001) 1-6.

[28] Arai S., Abe N., “Podiform chromitite in the arc mantle: chromitite xenoliths from the Takashima alkali basalt”, southwest Japan arc, Mineralium Deposita 29 (1994) 434-8.

[29] Arai S., Yurimoto H., “Possible sub-arc origin of podiform chromitities”, Island Arc 4 (1995) 104-111.

[30] Arai S., Shimizu Y., Ismail S. A., Ahmed A. H., “Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq”, Mineralogical Magazine 70 (2006) 499-508

[31] Proenza J. A., Ortega-Gutierrez F., Camprubi A., Tritlla J., Elias-Herrera M., Reyes-Salas M., "Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatla´n Complex, southern Mexico): a petrological and mineralogical study”, Journal of South American Earth Sciences 16 (2004) 649-666.

[32] Garuti G., Proenza J. A. Zaccarini F., “Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): control by magmatic and hydrothermal processes”, Mineralogy and Petrology 89 (2007) 159-188.

[33] Gonzalez-Jimenez J.M., Kerestedjian T., Proenza J.A., Gervilla F., “Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria)”, Geologica Acta. 7 (2009) 413-429

[34] Zhou M.F., Robinson P.T., “Origin and tectonic environment of podiform chromits deposits”, Economic Geology 92 (1997) 259-262.

[35] Maurel C., Maurel P., “E´tude expe´rimentale de la distribution de l’aluminium entre bain silicate´ basique et spinelle chromife`re. Implications pe´troge´ne´tiques: teneur en chrome des spinelles”, Bulletin de Mine´ralogie 105 (1982) 197–202.

[36] Roeder P. L., Reynolds I., “Crystallization of chromite and chromium solubility in basaltic melts”, Journal of Petrology 32 (1991) 909–934.

[37] Auge T., Roberts S., “petrology and geochemistry of some chromitiferous bodies within the Oman ophiolite”, Ofioliti, (2/3) (1982) 133-154.

[38] Prichard H. M., Neary C. R., “Some observation on chromite in Shetlan ophiolite complexe”, ofioliti (2/3) (1982) 455- 466.

[39] Minitti M. E., Rutherford M. J., Taylor B. E., Dyar M. D., Schultz P. H., “Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1. Amphibolite experiments”, Earth and Planetary Science Letters 266 (2008) 46–60.

[40] Rollinson H., Appel P. W. U., Freia R., “A metamorphosed, Early Archaean Chromitite from West Greenland: Implications for the Genesis of Archaean Anorthositic Chromitites”, Journal of petrology 43 (2002) 2143-2170.