بررسی زیست محیطی پرتوزایی بوکسیت و گل قرمز حاصل از فرآوری بوکسیت جاجرم و محاسبه‌ی نسبت اختلاط گل قرمز برای استفاده در مصالح ساختمانی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه تبریز

3 دانشگاه علوم پزشکی مشهد

چکیده

مواد معدنی موجود در پوسته­ی زمین بسته به ترکیب و خواستگاهی که دارند حاوی مقادیری از رادیونوکولئیدهای پرتوزا هستند. حضور این رادیونوکلوئیدها پیوسته بر میزان دوز دریافتی انسان از محیط تأثیر گذاشته و می‌تواند در سطوح بالا خطر زا باشند.  بوکسیت به­عنوان ماده­ی معدنی خام تولید آلومینیوم حاوی مقادیر نسبتاً بالایی از این رادیونوکلوئیدها است. فرآیند برداشت بوکسیت می‌تواند باعث تمرکز بیشتر این رادیونوکلوئیدها در باطله­ی آن یعنی گل قرمز شود. برای کاهش مخاطرات زیست محیطی گل قرمز و نیز به خاطر دارا بودن مقادیر بالای اکسیدهای آهن، از گل قرمز در صنایع سیمان و آجر سازی استفاده می‌شود. به لحاظ بالا بودن سطح پرتوزایی گل قرمز، باید پیش از استفاده در صنایع، سطح پرتوزایی آن از نظر شاخص‌ها و استانداردهای وابسته مورد ارزیابی قرار گیرد. از این رو در این پژوهش پرتوزایی نمونه‌های بوکسیتی و گل قرمز معدن بوکسیت جاجرم را که بزرگ‌ترین ذخیره­ی بوکسیت ایران است و سالانه حدود ۱۰۰۰۰۰۰ تن گل قرمز تولید می‌کند، از نظر شاخص‌های زیست محیطی مورد بررسی قرار داده‌ایم. در نهایت با توجه به میانگین سطح پرتوزایی اندازه گیری شده گل قرمز، نسبت اختلاط گل قرمز با خاک رس برای ساخت مصالح ساختمانی با سطح پرتوزایی پایین‌تر از حد مجاز مورد محاسبه قرار گرفت

کلیدواژه‌ها


عنوان مقاله [English]

Environmental investigation on radiation of Bauxite and Red Mud from bauxite processing in Jajarm Bauxite mine and calculation of red mud mixing ratio for using in construction material.

چکیده [English]

Minerals, depending on their composition and origin, contain some radioactive nuclides. Presence of such radionuclides such as 238U, 232Th and 40K in materials are dangerous when they are highly concentrated and influence on human exposure. Bauxites as a raw material for aluminum may contain relatively high amount of those radionuclides, which are more concentrated in remained red-mud after Al production process.  Due to high existing of iron oxides in the red-mud, it is preferred to be used in recycled products such as cement and brick. Because of high amount of radionuclides in red-mud, its radioactivity should be determined and decrease their environmental impact before using in industry. Therefore, radiation of red muds from Jajarm bauxite mine, which is the biggest bauxite deposit in Iran (with 1000000 tones red-mud annual production), have been determined in this study. Finally, after determination of average radiation of Jajarm red-mud, the mixing ratio of red-mud to low-radiation materials (such as clay minerals) was calculated for using in construction materials, under standard level of radiation.

کلیدواژه‌ها [English]

  • Bauxite
  • red mud
  • Jajarm
  • radiation
  • construction materials
[1] Mason M., Moore C.B., “Principles of Geochemistry (4th Edition)” , John Wiley & Sons, New York (1982).

[2] Díaz B., Joiret S., Keddam M., Nóvoa X. R., Pérez M. C., Takenouti H., “Passivity of iron in red mud’s water solutions”, Electrochemical Acta, Vol: 49 ( 2004) PP. 3039-3048.

[3] Somlai J., Jobb´agy.V., Kov´acs.J., Tarj´an.S., Kov´acs.T., "Radiological aspects of the usability of red mud as building material additive", Journal of Hazardous Materials 150 (2008) 541–545.

]4[ رحیم پور بناب. ح. ، اسماعیلی د.، "پتروگرافی و ژنز کانسار بوکسیت جاجرم"، مجله علوم دانشگاه تهران، جلد سی و سوم، شماره 1، (1386) ص 107-123.

]5[ اسم خانی.ر.، قبادی. ب. ، امیرخانی. الف. ، امین خانی.ع.، 1387، "شناسایی گل قرمز کارخانه تولید آلومینای جاجرم و مطالعه روش‌های بازیابی تیتانیوم دی اکسید از آن, نشریه شیمی و مهندسی شیمی ایران"، دوره 27، شماره2، ص 59-66.

]6[ ناصری م.، "کانی‌شناسی و ژئوشیمی بوکسیت جاجرم"، پایانامه کارشناسی ارشد زمین‌شناسی (گرایش اقتصادی) ، دانشگاه فردوسی مشهد، (1382) 146ص.

[7] Schwertmann U., “Relations between iron oxides, soil color, and soil formation. In Bingham”, Soil Color 31(1993) 51–69.

[8] UNSCEAR., “Sources and Effects of Ionizing Radiation”, United Nations Scientific Committee on the Effects of Atomic Radiation (1993).

[9] Abbady A.G.E., “Estimation of radiation hazard indices from sedimentary rocks in Upper Egypt”, Applied Radiation and Isotopes 60 (2004) 111- 114.

]10[ اعلایی ش.، "بررسی کمی و کیفی رادیوایزوتوپ های موجود در آب و خاک منطقه مرند و زنوز"، پایانامه کارشناسی ارشد فیزیک (گرایش هسته‌ای)، دانشگاه تبریز، ص 107 (1383).

[11] Tufail,M., “Natural radioactivity from building materials used in Islamabad and Rawalpindi”, Pakistan The Science of the total Environment, 121 (1992) 283–291

[12] Iqbal, M., Tufail, M., Mirza, S.M., “Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometry”, J. Environ. Radioactivity 51 ( 2000) 255.

[13] UNSCEAR., “ANNEX B Exposures to natural radiation sources”, United Nations Scientific Committee on the Effects of Atomic Radiation (1982).

[14] ICRP-60, “Radiation Protection: Recommendations of the International Commission on Radiological Protection”. Oxford Press (1990).

[15] Quindos, L.S., Newton, G.J., Fernandez, P.L., Soto, J., “Natural radioactivity of some Spanish building materials”, Sci. Tot. Environ 68 (1987) 181.

]16 [قربانی ی.، اولیازاده م.، شاهوردی ا.ر.، پیرایه‌گر ا.، "فروشوییشیمیایی آلومینا از گل قرمز با بررسی اثر مجزا و ترکیبی اسیدهای آلی و معدنی"، نشریه دانشکده فنی،جلد41، شماره 3 (1386) ص 343-353.

[17] Jaffrezic-Renault N., Poirier-Andrade H., Trang., “Models for the adsorption of uranium on titanium dioxide”, Journal of Chromatography A 201 (1980) 187–192.

[18] Noubactep C., Sch¨oner A., Meinrath G., “Mechanism of uranium removal from the aqueous solution by elemental iron”, Journal of Hazardous Materials B132 (2006) 202–212.

[19] Sabriye Y., Erenturk S., “Sorption behaviors of uranium (VI) ions on α-FeOOH”, Desalination 269 (2011) 58–66.

[20] Giammar D.E., Hering J.G., “Time scales for sorption-desorption and surface precipitation of Uranyl on Goethite”, Environmental Sci Technol 35 (2001) 3332–3337.