بررسی‌های سنگ‌شناسی و میانبارهای شاری در کانسار مس پورفیری کهنگ

نویسندگان

1 دانشگاه تهران

2 دانشگاه صنعتی امیرکبیر

چکیده

کانسار مس پورفیری کهنگ در استان اصفهان و در بخش میانی کمربند ماگمایی ارومیه – دختر واقع شده است. بنا بر بررسی صحرایی و سنگ­نگاری مقاطع نازک و مغزه­ها، سنگ­های آذرین بخش شرقی، این کانسار از نظر ارتباط با کانی­سازی به سه دسته درونگیر، کنترل­کننده کانی­سازی و دایک­های عقیم پس از کانی­سازی تقسیم می­شوند. کوارتزدیوریت­ها بیش از 70 درصد از بدنه اصلی توده آذرین کنترل­کننده کانی­سازی را تشکیل داده­­اند. زمین­شیمی سنگ­های خروجی و نفوذی نشان می­دهد که این سنگ­ها از یک ماگمای آهکی- قلیایی واحد تشکیل شده­اند که در نتیجه تبلور جدایشی، تنوع سنگی مشاهده شده در سنگ­های آذرین را به وجود آورده­اند. میزان SiO2 در سنگ­های مورد بررسی بین 49 تا 67 درصد تغییر می­کند و با افزایش آن در سنگ­ها مقدار Na2O و K2O به طور خطی افزایش و میزان Fe2O3، MgO، CaO، Al2O3 و TiO2 به طور خطی کاهش می­یابند. عناصر Rb، Th، Ba و La نیز با افزایش SiO2 به­صورت خطی افزایش وSc، Yb، Ni و Y کاهش می­یابند. دگرسانی­های مشاهده شده به بیشتر پتاسیک، فیلیک، کوارتز – سریسیت، پروپیلیتیک و آرژیلیک هستند. دگرسانی پتاسی مشاهده شده در اعماق کمتر از 730 متر به­صورت بیوتیتی بوده و فاقد فلدسپار قلیایی است؛ در حالی که، دگرسانی پتاسی نوعی برای اولین بار در عمق 730 متری در گمانه­ی­ 66 مشاهده شد و حاوی کوارتز، فلدسپار قلیایی و بیوتیت ثانویه است. بررسی میانبارهای شاری بر روی رگه­های کوارتزی کانه­دار در زون پتاسی ثابت می­کند که شاره­های شور حاوی همبافت­های کلریدی، عامل حمل فلز مس و کانی­سازی پورفیری در حداقل دمای 415 درجه­ی سانتیگراد، فشار 340 بار و عمق 3/1 کیلومتر است. سرد شدن شاره­ها علاوه بر فرایند جوشش که در رگه­های A2 و B مشاهده می­شود، عوامل اصلی کننده کنترل ته­نشست کالکوپیریت در کانسار مس پورفیری کهنگ هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Petrology and fluid inclusion studies in Kahang porphyry copper deposit

چکیده [English]

Kahang porphyry copper deposit is located in Isfahan Province, in the middle of Urmia-Dokhtar Magmatic Belt. Based on field investigations and petrography of thin sections and core samples, igneous rocks in eastern part of the deposit are divided into three types of host-rocks, source and mineralizing rocks, and post-mineralizing barren dikes. Quartzdiorite has formed more than 70 percent of the main mineralizing stock. Geochemistry of volcanic and plutonic rocks shows that these rocks have formed from a single Calk-Alkaline magma that has produced various igneous rocks by differential crystallization. With increasing Si oxide, Na2O and K2O linearly increase, and FeO, MgO, CaO, P < sub>2O5, Al2O3 and TiO2 linearly decrease. Trace elements including Rb, Th, Ba and La, as well, with increasing SiO2, linearly increase, Sc, Yb, Ni and Y decrease, and Ce has a constant trend. The main alteration types in the deposit are Potassic, Phyllic, Quartz-Sericite, Propyllitic, and Argillic. Biotite is the major product of potassic alteration, and hydrothermal alkali feldspar could only be observed in depths greater than 730 meter. Fluid inclusion studies on mineralized quartz veins in Potassic zone confirm that Cl-bearing saline fluids have carried Cu, and porphyry mineralization has formed in a temperature, pressure and depth of about 415 ºC, 340 bars, and 1.3 km, respectively. Boiling and fluid cooling in A2 and B veins are the main controlling factors in precipitation of chalcopyrite in Kahang PCD.

کلیدواژه‌ها [English]

  • Urmia-Dokhtar
  • porphyry copper
  • kahang
  • petrology
  • fluid Inclusion
[1] فرمهینی فراهانی م.، "مطالعات زمین‌‌شناسی، ژئوشیمی و کانی‌شناسی محدوده اکتشافی کهنگ". رساله دکتری رشته زمین‌شناسی اقتصادی دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران، (1387) 249 ص.

[2] هراتی ح.، "بررسی زمین‌شناسی اقتصادی، آلتراسیون، کانی‌شناسی و ژئوشیمی توده کانسار مس پورفیری کهنگ (شمال شرق اصفهان)"، رساله دکتری زمین‌شناسی اقتصادی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، (1390) 211 ص.

[3] خداپرست م.، "بررسی پترولوژی و ژئوشیمی سنگ‌های پلوتونیکی محدوده اکتشافی کهنگ (شمال‌شرق اصفهان)"، پایان‌نامه کارشناسی ارشد رشته پترولوژی، دانشکده زمین‌شناسی دانشگاه تهران، (1389) 152 ص.

[4] Berberian M., King G.C., “Towards a paleogeography and tectonic evolution of Iran”, Canadian Journal of Earth Sciences 18 (1981) 210–265.

[5] Pourhosseini F., “Petrogenesis of Iranian plutons: a study of the Natanz and Bazman intrusive complexes”, PhD Thesis, University of Cambridge, (1982) 315 p.

[6] Hezarkhani A., “Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran”, Journal of Asian Earth Sciences 27 (2006)326–340.

[7] Shahabpour J., “Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz”, Journal of Asian Earth Sciences24 (2005) 405–417.

[8] مهرداد آ.، "بررسی پترولوژی و ژئوشیمی سنگ‌های ولکانیکی میزبان کانسار مس پورفیری کهنگ (شمال‌شرق اصفهان)"، پایان‌نامه کارشناسی ارشد رشته پترولوژی، دانشکده زمین‌شناسی دانشگاه تهران، (1390) 127ص.

[9] شرکت ملی صنایع مس ایران، "گزارش مطالعات زمین‌شناسی و آلتراسون محدوده کهنگ شرقی در مقیاس 1:1000". مهندسین مشاور زرناب اکتشاف (1390).

[10] Cox K. G., Bell J. D., Pankhurst R. J., “The Interpretation of Igneous Rocks”, George Allen & Unwin, London (1979) 450 p.

[11] Rickwood P. C., “Boundary lines within petrologic diagrams which use oxides of major and minor elements”, Lithos 22 (1989) 247–263.

[12]Irvine, T. N., Baragar W. R. A.,“A guide to the chemical classification of the common volcanic rocks”,Canadian Journal of Earth Sciences8 (1971) 523–548.

[13] Shand S. J., “Eruptive Rocks: Their Genesis, Composition, Classification, and their Relation to Ore-Deposits”, 3rd edition, J. Wiley & Sons, New York, (1947) 488 p.

[14] Hezarkhani A., Williams-Jones A. E., “Controls of alteration and mineralization in the Sungun Porphyry Copper Deposit, Iran": evidence from fluid inclusions and stable isotopes”, Eco. Geol., 93 (1998) 651–670.

[15] Mason D. R., “Compositional variations in ferromagnesian minerals from porphyry copper-generating and barren intrusions of the Western Highlands, Papua New Guinea”, Eco. Geol. 73 (1978) 878–890.

[16] Mason D. R., McDonald J. A., “Intrusive rocks and porphyry copper occurences of the Papua New Guinea-Solomon Islands region”, Eco. Geol. 73 (1978) 857–877.

[17] Dilles J. H., "Petrology of the Yerington Batholith", Nevada: evidence for evolution of porphyry copper ore fluids. Eco. Geol. Vol. 82, No. 7, (1987) pp. 1750–1789.

[18] Winchester J. A., Floyd P. A., “Geochemical discrimination of different magma series and their differentiation products using immobile elements”, Chemical Geology 20 (1977) 325–343.

[19] Sun S. S., McDonough W. F., “Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes”, in Saunders, A. D., and Norry, M. J., eds., Magmatism in the ocean basins: Geological Society Special Publication 42: Oxford, Blackwell Scientific Publications (1989) 313–345.

[20] Rollinson H. R., “Using geochemical data: evaluation, presentation, interpretation”, Longman, UK (1993) 352 p.

[21] Gruen G., Heirich C. A., Schroeder K., “The Bingham Canyon Porphyry Cu-Mo-Au Deposit. II. Vein Geometry and Ore Shell Formation by Pressure-Driven Rock Extension”, Eco. Geol. 105 (2010) 69-90.

[22] Hezarkhani A., “Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: Evidence from fluid inclusions”, Journal of Asian Earth Sciences28 (2006) 409–422.

[23] Becker S. P., Fall A., Bodnar R. J., “Synthetic fluidinclusions. XVII. PVTX properties of high salinity H2O–NaClsolutions (>30 wt% NaCl): application to fluid inclusions thathomogenize by halite disappearance from porphyry copper andother hydrothermal ore deposits”, Econ. Geol.103 (2008) 539-554.

[24] Bodnar R. J., Vityke M., O., “Interpretation of microthermometry data for H2O-NaCl fluid inclusions”, in Fluid inclusions in Minerals, Methods and Applications, B. De Vivo and M. L. Frezzotti, eds., pub. By Virginia Tech, Blacksburg, VA, (1994) 117-130.

[25] Burnham C., W., “Magma and hydrothermal fluids”, in Barnes, H., L., ed.,Geochemistry of Hydrothermal Ore Deposits, 2nd edition: WileyInterscience, New York, (1979) 71-136.

[26] Fournier R. O., “Hydrothermal Processes Related to Movement of Fluid From Plastic into Brittle Rock in the Magmatic-Epithermal Environment”, Eco. Geol. 94 (1999) 1193-1211.

[27] Etminan E., “Le porphyre cuprifere de Sarcheshmeh (Iran): Role des phases fluides dans les mechanismes d'alteration et demineralization GSI”, Rept. No. 48 (1977)249p.

[28] Hezarkhani A., “Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions”, JGE 101 (2009) 254-264.