Geochemistry and petrogenesis of the Sabalan Plio-Quaternary volcanic rocks: implication for post-collisional magmatism

Abstract

Trachyandesites, trachytes and latites associated with ignimbrite and pyrocalstic rocks, characterized by shoshonitic affinity are the main Plio-Quaternary volcanic rocks in the Sabalan region (Ardabil). Plagioclase, K-feldspar, biotite associated with clinopyroxene and glass are the main constituents of these lavas. Plagioclases are andesine to labradorite while clinopyroxenes have augitic composition. The Sabalan volcanic rocks show enrichment in LREE relative to HREE and are characterized by enrichment in LILE and depletion in HFSE. Petrological observations along with geochemistry of rare earth and trace elements of these lavas suggest shoshonitic affinity and derivation from a subduction zone. The Sabalan volcanic rocks are isotopically characterized by derivation from an enriched mantle source (with/without crustal influence) with tendency to plot in a field defined by island-arc basalts (IAB) and OIBs (in εNd vs. 87Sr/86Sr diagram). The geochemical and isotopic signatures of the Sabalan lavas suggest that their magma has been issued via low degree partial melting of a subduction-metasomatized continental lithospheric mantle. The formation of these lavas is linked to slab steepening and break-off in a post-collisional regime.

Keywords


[1] Dilek Y., and Whitney D.L., "Cenozoic crustal evolution in central Anatolia: Extension, magmatism and landscape development, Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean", Geological Survey Department Nicosia-Cyprus (2000) 183–192.

[2] Dilek, Y., Imamverdiyev, N., Altunkaynak, S., "Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint", International Geology Review 52 (2010) 536–578.

[3] Pearce J.A., Bender J.F., DeLong S.E., Kidd W.S.F., Low P.J., Guner Y., Saroglu F., Yilmaz Y., Moorbath S., Mitchell J.J., "Genesis of collision volcanism in eastern Anatolia, Turkey", Journal of Volcanology and Geothermal Research 44 (1990) 189–229.

[4] Keskin M., "Magma generation by slab steepening and break off beneath a subductionaccretion complex: An alternative model for collision-related volcanism in Eastern Anatolia", Geophysical Research Letters 30 (2003) 8046.

[5] Kheirkhah M., Allen M.B., Emami M., "Quaternary syn-collision magmatism from the Iran/Turkey borderlands", Journal of Volcanology and Geothermal Research 182 (2009) 1–12.

[6] Riou R., Dupuy C., Dostal J., "Geochemistry of coexisting alkaline and calc-alkaline volcanic rocks from northern Azarbaijan (N.W. Iran)", Journal of Volcanology and Geothermal Research 11(1981) 253–275.

[7] Dhont D., Chorowicz J., "Review of the neotectonics of the Eastern Turkish–Armenian Plateau by geomorphic analysis of digital elevation model imagery ", International Journal of Earth Sciences 95 (2006) 34–49.

[8] Ozdemir Y., Karaoglu O., Tolluoglu A.U., Gulec N., "Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): The most recent post-collisional volcanism in Turkey", Chemical Geology 226 (2006) 189–211.

[9] Cubukcu H.E., Ulusoy I., Aydar E., Ersoy O., Sen E., Gourgaud A., Guillou H., "Mt. Nemrut volcano (Eastern Turkey): Temporal petrological evolution", Journal of Volcanological and Geothermal Research 210 (2012) 33–60.

[10] Innocenti F., Mazzuouli G., Pasquare F., Radicati Di Brozola F., Villari L., "Tertiary and Quaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution", Journal of Volcanological and Geothermal Research 13 (1982) 223–240.

[11] Comin-Chiaramonti P., Meriani S., Mosca R., Sinigoi S., "On the occurrence of analcime in the Northeastern Azerbaijan volcanic rocks (northwestern Iran)", Lithos 12 (1979) 187–198.

[12] Aghazadeh M., Castro A., Badrzadeh Z., Vogt K., "Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran", Geological Magazine Cambridge University Press (2011) 1–29.

[13] Dilek Y., Altunkaynak S., "Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: Mantle response to collision, slab breakoff, and lithospheric tearing in an orogenic belt, in Van Hinsbergen, D.J.J., Edwards, M.A., and Govers, R., eds., Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone", Geological Society of London Special Publication 311(2009) 213–233.

[14] Alberti A., Comin-Chiaramonti P., Di Battistini G., Fioriti R., Sinigei S., "Crystal Fractionation in the eastern Azerbaijan (Iran) Lower Tertiary shoshonitic suite", Neues Jahrbuch fur Mineralogie, Monatshefte 1 (1981) 35–48.

[15] Dostal J., Zebri M., "Geochemistry of Savalan volcano (northwestern Iran) ", Chemical Geology (1978) 223–142.

[16] Didon J., Germain Y.M.,"Le Sabalan, Volcan Plio-Quaternaire de l Azerbaidjan oriental (Iran): E tude geologique et petrographique de le difice et de son environment regional", [These]: France, Docteur du 3 eme cycle. Univ. Grenoble, (1976) 304 pp.

[17] Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series", Earth and Planetary Science Letters 59 (1982) 139–154.

[18] Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., "A chemical classification of volcanic rocks based on total Alkali-Silica content", Journal of Petrology 27 (1986) 745–750.

[19] Peccarillo A., Taylor S.R., 1976, "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey", Contributions to Mineralogy and Petrology 58 (1976) 63–81.

[20] Azizi H., Asahara Y., Mehrabi B., Chung S.L., "Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area, Sanandaj-Sirjan Zone, NW Iran",Chemie der Erde Article In Press (2011) 1–14.

[21] Karsli O., Ketenci M., Uysal I., Dokus A., Aydin F., Chen B., Kandemir R., Wijbrans J., "Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: Potential parental melts and geodynamic implications", Lithos 127 (2011) 354–372.

[22] McDonough W.F., Sun S.S., "Composition of the Earth", Chemical Geology 120 (1995) 223–253.

[23] Zhang C., Ma C., Holtz F., "Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): implications for delamination of the lower continental crust and melt-mantle interaction", Lithos 119 (2010) 467–484.

[24] Jahangiri A., "Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications ", Journal of Asian Earth Sciences 30 (2007) 433–447.

[25] Pearce J.A., "Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R.S., ed., Andesites", New York NY Wiley (1982) 525–548.

[26] Bezard R., Hebert R., Wang C., Dostal J., Dai J., Zhong H.,"Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet", Lithos 125 (2011) 347–367.

[27] Keskin M., Pearce J.A., Kempton P.D., Greenwood P., "Magma-crust interactions and magma plumbing in a post-collisional setting: Geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics and magmatism in the Mediterranean region and Asia", Geological Society of America Special Paper 409 (2006) 475–505.

[28] Sengor A.M.C., Ozeren S., Genc T., Zor E., "East Anatolian high plateau as a mantle supported, north-south shortened domal structure", Geophysical Research Letters 30 (2003) 8045.