The formation mechanism of tourmaline nodules in Boroujerd area (Dehgah-Sarsakhti)

Abstract

Based on the field observations host rock of tourmaline nodules in the Dehgah and Sarsakhti area are acidic dikes (Aplite) and monzogranite respectively. In these areas, nodules composed of tourmaline, quartz, alkali-feldspar, but leuco minerals component in Dehgah nodule are less than Sarsakhti area. The negative anomaly of Eu, enrichment in the light REE (LREE), decrease of HREE, and  fractionated REE chondrite normalized patterns in host rocks in these area suggest that crustal granites produced by partial melting of metapelitic rocks. Zoning, schorlite to dravite composition, nodules concentration in roof zone of the batholithe, decreases in abundance with depth, low ratio of Fe/Fe+Mg in some nodule (dravite), clear halo and miarolitic cavities in Sarsakhti area are evidences that exsolution of their fluid phase occurred at low rate and reacted to volatile to wall rocks (metapelites) fluids and are composed from magmatic – hydrothermal conditions. However, tourmalines in Dehgah area, with schorlite composition, host rock with planar structural (aplite), lack of zoning and clear halo, and lack of miarolitic cavities suggest that boron rich volatile has not been reacted with wall rocks (metapelites) fluids and in a perfect magmatic condition, immediately percolated to acidic dikes and caused in the final crystallization of tourmaline nodules. Therefore different rates of boron and its fluid behavior in the hydrothermal-magmatic system is the major factor controlling of spherical shape tourmaline nodules in the two studies areas.

Keywords


[1] Maning D. A. C. "Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Tailand", ineralogical Magazine 45 (1982) 139-147.

[2] London D., "Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles", European Journal of Mineralogy 11(1999) 253–262.

[3] Taylor R.P., Ikingura J.R., Fallick A.E., Huang Yiming, Watkinson D.H., "Stable isotope compositions of tourmalines from granites and related hydrothermal rocks of the Karagwe-Ankolean belt, northern Tanzania", Chemical Geology (Isotope Geoscience Section) 94 (1992) 215-227.

[4] Benard F., Moutou P., Pichavant M., "Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas". Journal of Geology 93 (1985) 271-291.

[5] Shewfelt D., Ansdell K., Sheppard S., "The origin of tourmaline nodules in granites; preliminary findings from the Paleoproterozoic Scrubber Granite", Geological Survey of Western Australia Annual Review (2005) 59–63.

[6] Didier J., "Mineral nodules", In: Didier, J. (ed.) Granites and Their Enclaves. The Bearing of Enclaves on the Origin of Granites. Elsevier, Amsterdam, Developments in Petrology 3 (1973) 357–368.

[7] Le Fort P., "Enclaves of the Miocene Himalayan leucogranites", In: Enclaves and granite petrology. Didier and Barbain (eds.), (1991) 35-47.

[8] Nemec D., "Genesis of tourmaline spots in leucocratic granites", Neues Jahrbuch Mineralogic Monatshefte 7 (1975) 308-317.

[9] Rozendaal A., Bruwer L., "Tourmaline nodules indicator of hydrothermal alteration and Sn–Zn–(W) mineralization in the Cape Granite Suite, South Africa", Journal of African Earth Sciences 21 (1995) 141-155.

[10] Sinclair D.W., Richardson J.M., "Quartz-tourmaline orbicules in the Seagull Batholith, Yukon Territory", Canadian Mineralogist 30 (1992) 923-935.

[11] Samson I.M., Sinclair W. D., "Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicles in the Seagull Batholith, Yukon Territory", Canadian Mineralogist 30 (1992) 937–954.

[12] Dini A., Corretti A., Innocenti F., Rocchi S., Westerman D. S., "Sooty sweat stains or tourmaline spots? The Argonauts at Elba Island (Tuscany) and the spread of Greek trading in the Mediterranean Sea", In Piccardi, L., Masse, W. B. (eds) Myth and Geology. Geological Society, London, Special Publications 273 (2007) 227–243.

[13] Trumbull R. B., Krienitz M.S., Gottesmann B., Wiedenbeck M., "Chemical and boron-isotope variations in tourmalines from S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia", Contributions to Mineralogy and Petrology 155 (2008) 1–18.

[14] Perugini D., Poli G., "Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy):an example of diffusion limited aggregation growth in a magmatic system", Contributions to Mineralogy and Petrology 153 (2007) 493–508.

[15] احمدی‌خلجی ا.، "پترولوژی توده‌ی گرانیتوئیدی بروجرد". پایان‌نامه دکتری، دانشکده علوم، دانشگاه تهران (1385).

[16] رادفر ج.، "بررسی‌های زمین‌شناسی و پترولوژی سنگ‌های گرانیتوئیدی ناحیه آستانه- گوشه". پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران (1366).

[17] احمدی‌خلجی ا.، "بررسی پترولوژی و پتروفابریک توده‌های نفوذی و دگرگونی مجاورتی منطقه بروجرد". پایان‌نامه کارشناسی ارشد، دانشکده علوم، دانشگاه تهران (1378).

[18] Ahmadi-Khalaji A., Esmaeily D., Valizadeh, M.V., Rahimpour-Bonab H., "Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran", Journal of Asian earth Sciences 29 (2007) 859-877.

[19] میرسپهوند ف.، طهماسبی ز.، شاهرخی س.، احمدی خلجی ا.، خلیلی م.، "ژئوشیمی و تعیین خاستگاه تورمالین های منطقه بروجرد". مجله بلورشناسی و کانی شناسی ایران، شماره 2 (1391)، ص281-292.

[20] طهماسبی ز.، احمدی خلجی ا.، رجاییه م.، "تورمالین زائی در توده گرانیتوئیدی آستانه (جنوب غرب اراک)". مجله بلورشناسی و کانی شناسی ایران، شماره 3 (1388)، ص369-380.

[21] Boynton W.V., "Geochemistry of the rare earth elements: meteorite studies", In: Henderson, P. (ed) Rare Earth Element Geochemistry, Elsevier, Amsterdam (1984) 63–114.

[22] Pivec E., Stempork M., Novak M., Lang J.K., "Tourmaline as a late-magmatic or post-magmatic mineral in granites of the Czech part of the Krusne Hory-Erzgebirge batholith and its contact zone". Journal of the Czech Geological Society 43 (1998) 17–23.

[23] Gaweda A., Pieczka A., Kraczka J., "Tourmalines from the western Tatra Mountains (W-Carpathians, S-Poland): Their characteristics and petrogenetic importance", European Journal of Mineralogy 14 (2002) 943-955.

[24] Pirajno F., Smithies R.H., "The FeO/(FeO+MgO) ratio of tourmaline: A useful indicator of spatial variations in granite-related hydrothermal mineral deposits", Journal of Geochemical Exploration 42 (1992) 371–381.

[25] Yavuz F., Fuchs Y., Karakaya N., Karakaya M.C., "Chemical composition of tourmaline from the Asarcık Pb–Zn–Cu±U deposit, Sebinkarahisar, Turkey", Mineralogy and petrology, 94 (2008) 195-208.

[26] Barbey P., "Diffusion-controlled biotite breakdown reaction textures at the solid/liquid transition in the continental crust", Contribution to Mineralogy and Petrology 154 (2007) 707–716

[27] Thomas R., Forster H.J., Heinrich W., "The behavior of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study", Contributions to Mineralogy and Petrology 144 (2003) 457–472.

[28] Rozendaal A., Bruwer L., Scheepers R., "Tourmaline nodules as indicators of Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa", Mineral Deposits, Pasava, Kribek & Zak (eds.), (1995) 511-513.

[29] London D., Morgan G. B., VI. Wolf M. B., "Boron in granitic rocks and their contact aureoles", In Grew, E.S., Anovitz, L. (eds) Boron: Mineralogy, Petrology and Geochemistry in the Earth’s Crust, Mineralogical Society of America, Reviews in Mineralogy 33 (1996) 299–330.

[30] طهماسبی ز.، خلیلی م.، احمدی خلجی ا.، مکی زاده م.ع.، "مقایسه انواع آمفیبول و ژئوترموبارومتری توده نفوذی آستانه (زون سنندج سیرجان)". مجله بلورشناسی و کانی شناسی ایران، شماره 2 (1388)، ص279-290.

[31] طهماسبی ز.، خلیلی م.، احمدی خلجی ا.، مکی زاده م.ع.، "پتروژنز توده‌ی گرانیتوئیدی جنوب شازند (جنوب غرب اراک)"، پترولوژی، شماره 1 (1389)، ص87-102.

[32] احمدی خلجی ا.، ولی‌زاده م.و.، اسماعیلی د.، "پترولوژی و ژئوشیمی توده‌ی گرانیتوئیدی بروجرد (‌غرب ایران)". مجله دانشکده علوم، دانشگاه تهران، شماره1٠ (1386)، ص14-1.

[33] Wilke M., Nabelek P.I., Glascock M. D., "B and Li in Proterozoic metapelites from the Black Hills, U.S.A.: Implications for the origin of leuco-granitic magmas", American Mineralogist 87 (2002) 491-500.

[34] Veksler I.V., "Liquid immiscibility and its role at the magmatic hydrothermal transition: a summary of experimental studies", Chemical Geology 210 (2004) 7-31.

[35] Veksler I.V., Thomas R., "An experimental study of B-, P- and Frich synthetic granite pegmatite at 0.1 and 0.2 GPa", Contributions to Mineralogy and Petrology 143 (2002) 673–683.

[36] Candela P. A., "Physics of aqueous phase evolution in plutonic environments", American Mineralogist 76 (1991) 1081-1091.

[37] Candela P. A., "Combined chemical and physical model for plutonic devolatilization: A non-Rayleigh fractionation algorithm", Geochimica et Cosmochimica Acta 58 (1994) 2157–2167.

[38] Dingwell D. B., Pichavant M., Holtz F., "Experimental studies of boron in granitic melts", In Grew, E.S., Anovitz, L. (eds) Boron: Mineralogy, Petrology, and Geochemistry in the Earth’s Crust Mineralogical Society of America, Reviews in Mineralogy 33 (1996) 331–385.

[39] Dingwell D. B., "Granitic Melt Viscosities", Geological Society, London, Special Publications 168 (1999) 27-38.

[40] Burianek D., Novak M., "Morphological and compositional evolution of tourmaline from nodular granite at Lavicky near Velke Mezirıcı, Moldanubi cum, Czech Republic", Journal of the Czech Geological Society 49 (2004.) 81–90.

[41] Burianek D., Novak M., "Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: examples from the Bohemian Massif, Czech Republic", Lithos 95 (2007) 148-164.

[42] Kubis M., Broska I., "The role of boron and flourine in evolved granitic rock systems (on the example of the Hnilec area, Western Carpathians)", Geologica Carpathica 56 (2005) 193–204.

[43] Balen D., Broska I., "Tourmaline nodules: products of devolatilization within, the final evolutionary stage of granitic melt?", Geological Society, London, Special Publications 350 (2011) 53-68.