[1] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer The Los Azufres (Mexico) geothermal system", Contribution to Mineralogy and Petrology, 91,235-244 (1985).
[2] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay Minerals, Vol. 23, 471-485 (1988).
[3] Bailey S. W., "Chlorites: structures and crystal chemistry". Rev. Miner., 19, 347–404(1988).
[4] Battaglia S. "Applying X-ray geothermometer diffraction to a chlorite", Clays Clay Miner., 47 (1), 54–63(1999).
[5] Schmidt D., Livi K. J. T. HRTEM and SAED investigations of polytypism, "stacking disorder, crystal growth, and vacancies in chlorites from subgreeenschist facies outcrops". Am. Miner., 84, 160–170 (1999).
[6] Vidal O., Parra T., "Vieillard P Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation", Am. Miner., 90,347–358. (2005).
[7] Plissart G., Féménias O., "Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite, south western Romania", Canadian Mineralogists, 47, 81–105 (2009).
[8] Morad S., Sirat M., M. A. K. El-Ghali, H. Mansurbeg, "Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden: record of hydrothermal alterations and implications for nuclear waste storage", Clay Minerals v. 46 no. 3 p. 495-513(2011).
[9] López-Munguira1 A., Nieto F., Morata D., "Chlorite composition and geothermometry: a comparative HRTEM/AEM-EMPA-XRD study of Cambrian basic lavas from the Ossa Morena Zone", SW Spain. Clay Minerals, 37(2), 267-281 (2002).
[10] Mata M. P., Giorgetti G., Árkai P., Peacor D. R., "Comparison of evolution of trioctahedral chlorite/ berthierine/smectite in coeval metabasites and metapelites from diagenetic to epizonal grades", Clays and Clay Minerals, 49(4), 318-332 (2001).
[11] Dodge F. C. W., "Chlorites from granitic rocks of the central Sierra Nevada batholith; California", Mineralogical Magazine, 39, 58-64 (1973).
[12] Refaat Adel. M., Abdallah Zeinab M., "Geochemical study of coexisting biotite and chlorite from Zaker granitic rocks of Zanjan Area", Northwest, Iran. N.Jb Miner. Abh., 136(3), 262-275 (1979).
[13] Ferry J. M., "Reaction mechanisms, physical conditions and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south-central Maine", American Journal of Science, 278, 1025-56 (1985).
[14] Parneix J.C., Beaufort D., P. Dudoignon, A. Meunier, "Biotite chloritization process in hydrothermally altered granites.", Chemical Geology (1985),vol. 51, Pages 89–101.
[15] Veblen D. R., Ferry J. M., "A TEM study of the biotite-chlorite reaction and comparison with petrologic observations", Am. Miner., 68, 1160–1168 (1983).
[16] Wilamowski A., "Chloritization and polytypism of biotite in the £omnica granite", Karkonosze Massif, Sudetes, Poland: stable isotope evidence. Chem. Geol., 182 (2–4), 529–547 (2002).
[17] Shabani, T. A. A., "Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians. Journal of Sciences", Islamic Republic of Iran 20(3), 265-275 (2009).
[18] Eggleton R. A., Banfield J. F., "The alteration of granitic biotite to chlorite", Am. Miner., 70, 902–910 (1985).
[19] Olives-Banos J. O., Amouric M., "Biotite chloritization by interlayer brucitization as seen by HRTEM", Am. Miner., 69,869–871 (1984).
[20] Parneix J. C., Petit J. C., "Hydro thermal alteration of an old geothermal system in the Auriat granite (Massif Central, France): petrological study and modeling", Chem. Geol., 89, 329–351 (1991).
[21] Janeczek J. "The effect of aluminous titanite on the biotite -chlorite and amphibole-chlorite reactions" Eur. J. Miner., 6, 623–625 (1994).
[22] Ciesielczuk J., "Chlorite of hydrothermal origin in the Strzelin and Borów granites (Fore-Sudetic Block, Poland)", Geological Quarterly, 56 (2), 333–344 (2012).
[23] Kogure T., banfield J. F., "Direct identification of the six polytypes of chlorite characterized by semi-random stacking", American Mineralogist, 83, 925–930 (1998).
[24] Khodabandeh A. A., Soltani G., "Geology map 1/100,000 Naqadeh", Geological Survey and Mineral Exploration of Iran (1383).
[25] Mazhari S. A., "Petrogenesis of Naqadeh-Sardasht plutons, PhD thesis", Tarbiat Moallem University, pp.216, (2008).
[26] Shabani T. A. A., "A study of wet chemistry determinations of iron cations in biotite, Journal of Crystallography and Mineralogy of Iran", Vol. 19, Winter 2012, No. 4, 715-724.
[27] Speer J.A, "Micas in igneous rocks. In Micas (S.W.Bailey,ed)", Rev. Mineral. 13, 299-356.
Mineral. Soc. Amer (1984).
[28] Bettison L. A., Schiffman P., "Compositional and structural variations of phyllosilicates from Point Sal ophiolite, California", American Mineralogist, 73, 62-76 (1988).
[29] Xie X., Byerly G. R., Ferrell R. E., "jr IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry", Contr. Miner. Petrol., 126, 275–291(1997).
[30] Hiller S., Velde B., "Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites", Clay minerals, 26, 149-168, (1991).
[31] Czamanske G. K., Ishihara S., Atkin S., "A Chemistry of rock-forming minerals of the Cretaceous Paleocene batholith in southwestern Japan and implications for magma genesis", Journal of Geophysical Research, 86(B11), 10431-10469 (1981).
[32] Parry W. T., Downey L. M., "Geochemistry of hydrothermal chlorite replacing igneous biotite", Clays and Clay Minerals, 30, 81-90 (1982).
[33] Tulloch A. J., "Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite", Contribution to Mineralogy and Petrology, 69, 105-117(1979).
[34] Albee A. L., "Relationships between the mineral association, chemical composition and physical properties of the chlorite series", American Mineralogist, 47, 851-870 (1962).
[35] Deer W. A., Howie R. A., Zussman J., "Rock-forming minerals", John Wiley and Sons, New York Volume 3, (1962).
[36] Foster M. D., "Interpretation of the composition and classification of the chlorites", USGS Prof Paper 414-A, 1-33 (1962).
[37] Jiang W.-T., Peacor D. R., Buseck P. R., "Chlorite geothermometry? Contamination and apparent octahedral vacancies", Clays Clay Miner., 42 (5), 593–605 (1994).
[38] Kranidiotis P. Y., MacLean W. H., "Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami", Quebec. Economic Geology, 821898-911 (1987).
[39] De Caritat P., Hutcheon I., Walshe J. L., "Chlorite geothermometry", a review Clays Clay Miner., 41 (2), 219–239 (1993).
[40] Ciesielczuk J., "Geochemistry of the hydrothermally altered granite from the shear zone in Borów (Strzegom-Sobótka massif)", Pr. Spec. PTM, 17, 132–134 (2000).