ترکیب و زمین دماسنجی کلریت‌های حاصل از دگرسانی بیوتیت در توده‌های گرانیتوئیدی نقده و پسوه

نویسندگان

1 سازمان زمین‌شناسی و اکتشافات معدنی کشور

2 دانشگاه خوارزمی

3 دانشگاه تهران

4 موسسه زمین شناسی زیست محیطی و زمین شناسی مهندسی

چکیده

تجزیه­ی شیمیایی عناصر اصلی کلریت­های حاصل از دگرسانی بیوتیت در توده­های گرانیتوئیدی ائوسن نقده و پسوه با یک ریزپردازنده الکترونی تعیین شد. بر پایه­ی 53 نقطه­ی تجزیه کلریت از 13 نمونه سنگ، محاسبه فرمول ساختاری میانگین نشان داد که تعداد کاتیون سیلیسیم کمتر از 97/5 اتم در واحد فرمولی (apfu)، و مجموع کاتیون­های هشت­وجهی نزدیک به 12 apfu است که دلالت بر کلریت نوع هشت­وجهی سه­گانه دارند. کسر مولی محاسبه شده در فاز بین لایه­ای، Xc، گستره­ای بین 86/0 تا 94/0 نشان می­دهد که تاییدی بر خلوص کلریت یا به عبارت دیگر نبود کامل لایه­های اسمکتیت در نمونه­های کلریت مورد بررسی است. تنوع ترکیبی مشاهده شده در کلریت به­وسیله­ی ترکیب بیوتیت و سنگ میزبان کنترل می­شود. ترکیب نمونه­های کلریت در توده­ی پسوه دارای نسبت Fe/(Fe + Mg) = 0.75-0.85 و تعداد کاتیون­های سیلیسیم در فرمول ساختاری 69/5-14/5 apfu و در توده­ی نقده دارای نسبت Fe/(Fe + Mg) = 0.39-0.49 و تعداد کاتیون­های سیلیسیم 97/5-45/5 apfu است که به ترتیب به ریپیدولیت و پیکنوکلریت رده­بندی می­شوند. همه عناصر اصلی در کلریت با همدیگر همخوانی دارند. همچنین نسبت Fe/(Fe + Mg) در بیوتیت به وسیله­ی کلریت حفظ می­شود. زمین­دماسنجی کلریت بر اساس تغییر در مقدار Al هشت­وجهی و نسبت Fe/Fe + Mg در ساختار کلریت یک تغییر بزرگ در دما از 399-299 با میانگین 345 درجه­ی سانتیگراد در توده­ی پسوه و 350-270 با میانگین 320 درجه­ی سانتیگراد در توده­ی نقده را نشان می­دهد که با میانگین دمای تشکیل کلریت­های حاصل از دگرسانی بیوتیت در سنگ­های گرانیتی نواحی دیگر زمین همخوانی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Composition and Geothermometry of Chlorite Replacing Biotite in Naqadeh and Pasve Granitoid Intrusions

چکیده [English]

Chemical analyses of chlorite flakes, as a product of alteration of biotite in the Eocene granitoid rocks of Naghade and Pasveh intrusions have been accomplished by electron microprobe for major elements. Based on 53 point analyses of chlorites from 13 rock samples, their mean structural formula recalculations display that Si cation numbers are less than 5.97 atoms per formula unit (apfu), and the sum of octahedral cations is very close to 12 both an indication of trioctahedral chlorite. The calculated mole fraction of chlorite in interlayered phase, Xc, ranges from. 0.86 to 0.94 confirming the purity of chlorite, i.e., the study chlorites are completely free of any smectite layers. Compositional variations in chlorite are strongly controlled by host biotite and rock type. Chlorite samples from Pasveh intrusion have Fe/(Fe+Mg) ratio ranges from 0.75 to 0.85 and Si contents from 5.14 to 5.69 apfu; those from Naqadeh intrusion possess Fe/(Fe+Mg) ratio ranges from 0.39 to 0.49 and Si contents from 5.45 to 5.97 apfu leading to the classification of chlorites mainly as ripidolite and pychnochlorite respectively. All major elements in the chlorite are strongly correlated with each other. Moreover, Fe/(Fe+Mg) ratio in biotite is well preserved by chlorite. Chlorite geothermometry based on the variation in tetrahedral Al content and Fe/Fe+Mg ratio within the chlorite structure shows a large variation in temperatures from 299 to 399 ºC with an average of 345 ºC for Pasveh intrusion and from 270 to 350 ºC with an average of 320 ºC for Naqadeh intrusion; both mean temperatures correspond with the mean temperatures of chlorite crystallization in a number of granitoid rocks of the world.

کلیدواژه‌ها [English]

  • chlorite
  • biotite
  • alteration
  • Granitoid
  • Naqadeh
  • Pasveh
[1] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer The Los Azufres (Mexico) geothermal system", Contribution to Mineralogy and Petrology, 91,235-244 (1985).

[2] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay Minerals, Vol. 23, 471-485 (1988).

[3] Bailey S. W., "Chlorites: structures and crystal chemistry". Rev. Miner., 19, 347–404(1988).

[4] Battaglia S. "Applying X-ray geothermometer diffraction to a chlorite", Clays Clay Miner., 47 (1), 54–63(1999).

[5] Schmidt D., Livi K. J. T. HRTEM and SAED investigations of polytypism, "stacking disorder, crystal growth, and vacancies in chlorites from subgreeenschist facies outcrops". Am. Miner., 84, 160–170 (1999).

[6] Vidal O., Parra T., "Vieillard P Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation", Am. Miner., 90,347–358. (2005).

[7] Plissart G., Féménias O., "Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite, south western Romania", Canadian Mineralogists, 47, 81–105 (2009).

[8] Morad S., Sirat M., M. A. K. El-Ghali, H. Mansurbeg, "Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden: record of hydrothermal alterations and implications for nuclear waste storage", Clay Minerals v. 46 no. 3 p. 495-513(2011).

[9] López-Munguira1 A., Nieto F., Morata D., "Chlorite composition and geothermometry: a comparative HRTEM/AEM-EMPA-XRD study of Cambrian basic lavas from the Ossa Morena Zone", SW Spain. Clay Minerals, 37(2), 267-281 (2002).

[10] Mata M. P., Giorgetti G., Árkai P., Peacor D. R., "Comparison of evolution of trioctahedral chlorite/ berthierine/smectite in coeval metabasites and metapelites from diagenetic to epizonal grades", Clays and Clay Minerals, 49(4), 318-332 (2001).

[11] Dodge F. C. W., "Chlorites from granitic rocks of the central Sierra Nevada batholith; California", Mineralogical Magazine, 39, 58-64 (1973).

[12] Refaat Adel. M., Abdallah Zeinab M., "Geochemical study of coexisting biotite and chlorite from Zaker granitic rocks of Zanjan Area", Northwest, Iran. N.Jb Miner. Abh., 136(3), 262-275 (1979).

[13] Ferry J. M., "Reaction mechanisms, physical conditions and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south-central Maine", American Journal of Science, 278, 1025-56 (1985).

[14] Parneix J.C., Beaufort D., P. Dudoignon, A. Meunier, "Biotite chloritization process in hydrothermally altered granites.", Chemical Geology (1985),vol. 51, Pages 89–101.

[15] Veblen D. R., Ferry J. M., "A TEM study of the biotite-chlorite reaction and comparison with petrologic observations", Am. Miner., 68, 1160–1168 (1983).

[16] Wilamowski A., "Chloritization and polytypism of biotite in the £omnica granite", Karkonosze Massif, Sudetes, Poland: stable isotope evidence. Chem. Geol., 182 (2–4), 529–547 (2002).

[17] Shabani, T. A. A., "Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians. Journal of Sciences", Islamic Republic of Iran 20(3), 265-275 (2009).

[18] Eggleton R. A., Banfield J. F., "The alteration of granitic biotite to chlorite", Am. Miner., 70, 902–910 (1985).

[19] Olives-Banos J. O., Amouric M., "Biotite chloritization by interlayer brucitization as seen by HRTEM", Am. Miner., 69,869–871 (1984).

[20] Parneix J. C., Petit J. C., "Hydro thermal alteration of an old geothermal system in the Auriat granite (Massif Central, France): petrological study and modeling", Chem. Geol., 89, 329–351 (1991).

[21] Janeczek J. "The effect of aluminous titanite on the biotite -chlorite and amphibole-chlorite reactions" Eur. J. Miner., 6, 623–625 (1994).

[22] Ciesielczuk J., "Chlorite of hydrothermal origin in the Strzelin and Borów granites (Fore-Sudetic Block, Poland)", Geological Quarterly, 56 (2), 333–344 (2012).

[23] Kogure T., banfield J. F., "Direct identification of the six polytypes of chlorite characterized by semi-random stacking", American Mineralogist, 83, 925–930 (1998).

[24] Khodabandeh A. A., Soltani G., "Geology map 1/100,000 Naqadeh", Geological Survey and Mineral Exploration of Iran (1383).

[25] Mazhari S. A., "Petrogenesis of Naqadeh-Sardasht plutons, PhD thesis", Tarbiat Moallem University, pp.216, (2008).

[26] Shabani T. A. A., "A study of wet chemistry determinations of iron cations in biotite, Journal of Crystallography and Mineralogy of Iran", Vol. 19, Winter 2012, No. 4, 715-724.

[27] Speer J.A, "Micas in igneous rocks. In Micas (S.W.Bailey,ed)", Rev. Mineral. 13, 299-356.

Mineral. Soc. Amer (1984).









[28] Bettison L. A., Schiffman P., "Compositional and structural variations of phyllosilicates from Point Sal ophiolite, California", American Mineralogist, 73, 62-76 (1988).

[29] Xie X., Byerly G. R., Ferrell R. E., "jr IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry", Contr. Miner. Petrol., 126, 275–291(1997).

[30] Hiller S., Velde B., "Octahedral occupancy and the chemical composition of diagenetic (low temperature) chlorites", Clay minerals, 26, 149-168, (1991).

[31] Czamanske G. K., Ishihara S., Atkin S., "A Chemistry of rock-forming minerals of the Cretaceous Paleocene batholith in southwestern Japan and implications for magma genesis", Journal of Geophysical Research, 86(B11), 10431-10469 (1981).

[32] Parry W. T., Downey L. M., "Geochemistry of hydrothermal chlorite replacing igneous biotite", Clays and Clay Minerals, 30, 81-90 (1982).

[33] Tulloch A. J., "Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite", Contribution to Mineralogy and Petrology, 69, 105-117(1979).

[34] Albee A. L., "Relationships between the mineral association, chemical composition and physical properties of the chlorite series", American Mineralogist, 47, 851-870 (1962).

[35] Deer W. A., Howie R. A., Zussman J., "Rock-forming minerals", John Wiley and Sons, New York Volume 3, (1962).

[36] Foster M. D., "Interpretation of the composition and classification of the chlorites", USGS Prof Paper 414-A, 1-33 (1962).

[37] Jiang W.-T., Peacor D. R., Buseck P. R., "Chlorite geothermometry? Contamination and apparent octahedral vacancies", Clays Clay Miner., 42 (5), 593–605 (1994).

[38] Kranidiotis P. Y., MacLean W. H., "Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami", Quebec. Economic Geology, 821898-911 (1987).

[39] De Caritat P., Hutcheon I., Walshe J. L., "Chlorite geothermometry", a review Clays Clay Miner., 41 (2), 219–239 (1993).

[40] Ciesielczuk J., "Geochemistry of the hydrothermally altered granite from the shear zone in Borów (Strzegom-Sobótka massif)", Pr. Spec. PTM, 17, 132–134 (2000).