Study of amphibole and clinopyroxene chemistry of the Bozqush, Kaleybar and Razgah alkaline igneous intrusions, NW Iran

Abstract

The Bozqush, Kaleybar, and Razgah foid-bearing syenites are located in East Azarbaijan province, NW Iran. Mineral chemistry determined for the amphiboles and clinopyroxenes of intrusions to specify elemental exchange, magmatic affinity, and tectonic setting. Chemical composition of the amphiboles varies from magnasio-hastingsite to ferro-pargasite. This study shows that the Kaleybar amphiboles are richer in Ca+IVAl than the Bozqush ones and CaIVAl=SiNa exchange is the main substitution. According to mineral chemistry, the clinopyroxenes are diopside. Considering the atomic proportion of Wo, En and Fs in the studied clinopyroxenes, variation in end-member components mostly involve the interchange of En and Fs. Moreover there is M2CaM1(Fe2+,Mg) = M2NaM1Fe3+  exchange in the clinopyroxenes. The Composition of clinopyroxenes and amphiboles indicate that they were derived from volcanic arc miaskitic magma at relatively low pressures. Based on Al and Ti contents, thermobarometry of the amphiboles show pressures of 6±1 and 7±1 kbar for the Bozqush and Kaleybar intrusions respectively and temperature of 900±100 ˚C.

Keywords


[1] Deer W.A., Howie R.A., Zussman J., “An introduction to the rock forming minerals”, Second Edition, Longman, London, (1992) 696 p.

[2] Giret A., Bonin B., Leger J.M., “Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring complexes”, Canadian Mineralogist 18 (1980) 481–495.

[3] Strong D.F., Taylor R.P., “Magmatic-subsolidus and oxidation trends in composition of amphiboles from silica-saturated peralkaline igneous rocks”, Tschermaks Mineralogische und Petrographische Mitteilungen 32 (1984) 211–222.

[4] Dorais M.J., “Compositional variations in pyroxenes and amphiboles of the Belknap Mountain complex, New Hampshire: evidence for the origin of silica saturated alkaline rocks”, American Mineralogist 75 (1990) 1092– 1105.

[5] Coulson I.M., “Evolution of the North Qôroq centre nepheline syenites, South Greenland: alkali-mafic silicates and the role of metasomatism”, Mineralogical Magazine 67 (5) (2003) 873–892.

[6] Vuorinen J.H., Halenius U., Whitehouse M.J., Mansfeld J., Skelton A.D.L., “Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnf Island, Sweden”, Lithos 81 (2005) 55– 77.

]7[ باباخانی ع.، امینی آذر ر.، "گزارش عملیات اکتشافی بر روی توده نفلین سینیتی کلیبر به عنوان ماده اولیه تولید آلومینا، شیشه، سرامیک و سنگهای تزئینی و نما"، سازمان زمین شناسی کشور، شرکت توسعه علوم زمین (1373) 75 ص.

]8[ شهریار و.، "بررسی‌های پترولوژی و پتروگرافی توده نفوذی بزقوش، جنوب سراب"، پایان‌نامه کارشناسی ارشد، دانشکده علوم طبیعی، دانشگاه تبریز (1384) 107ص.

]9[ اشرفی ن.، عامری ع.، جهانگیری ا.، هَسِب ن.، اِبی ن.، "شیمی گارنت‌های توده آذرین قلیایی کلیبر، شمال‌غرب ایران"، مجله بلورشناسی و کانی شناسی ایران، 3 (1388) 368-357.

]10[ اشرفی ن.، جهانگیری ا.، عامری ع.، هَسِب ن.، اِبی ن.، "شیمی کانی بیوتیت‌ در توده‌های آذرین قلیایی بُزقوش و کلیبر، شمال‌غرب ایران"، مجله بلورشناسی و کانی شناسی ایران، 3 (1388) 394-381.

[11] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., “Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, Commission on new minerals and minerals name”, American Mineralogist 82 (1997) 1019–1037.

[12] Schumacher J.C., “The estimation of ferric iron in electron microprobe analysis of amphiboles”, Mineralogical Magazine 61 (1997) 312-321.

[13] Morimoto N., “Nomenclature of pyroxenes”, Canadian Mineralogist 27 (1989) 143–56.

[14] Gibb F.G.F., “The zoned clinopyroxenes of the Shiant Isles sill, Scotland”, Journal of Petrology 14 (1973) 203–230.

[15] Moazzen M., Oberhänsli R., “Whole rock and relict igneous clinopyroxene geochemistry of ophiolite-related amphibolites from NW Iran – Implications for protolith nature”, Neues Jahrbuch für Mineralogie Abhandlungen 185 (1) (2008) 51–62.

[16] Mitchell R.H., Platt R.G., “Mafic mineralogy of ferroaugite syenite from the Coldwell alkaline complex, Ontario, Canada”, Journal of Petrology 19 (1978) 627-651.

[17] Stephenson D., Upton B.G.J., “Ferromagnesian silicates in a differentiated alkaline complex: Kûngnât Fjeld, South Greenland”, Mineralogical Magazine 46 (1982) 283-300.

[18] Piilonen P.C., McDonald A.M., Lalonde A.E., “The crystal chemistry of aegirine from Mont Saint-Hilaire, Quebec”, Canadian Mineralogist 36 (1998) 779-791.

[19] Schweitzer E.L., Papike J.J., Bence A.E., “Statistical analysis of clinopyroxenes from deep-sea basalts”, American Mineralogist 64 (1979) 501–513.

[20] Le Bas M.J., “The role of aluminium in igneous clinopyroxenes with relation to their parentage”, American Journal of Science 260 (1962) 267–288.















[21] Leterrier J., Maury R.C., Thonon P., Girad D., Marchel M., “Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series”, Earth and Planetary Science Letters 59 (1982) 139–154.

[22] Wass S.Y., “Multiple origins of clinopyroxenes in alkali basaltic rocks”, Lithos 12 (1979) 115-132.

[23] Steward R.B., Price R.C., Schmith I.E.M., “Evolution of high-K arc magma, Egmont volcano, Taranaki, New Zealand: evidence from mineral chemistry”, Journal of Volcanology and Geothermal Research 74 (1996) 275-295.

[24] Lassen B., “Petrogenesis of the late Archean Quetico alkaline suite intrusions, Western Superior province, Canada”, Ph.D. thesis, University of Ottawa, Canada (2004) 240 pp.

[25] Parsons I., Mason R.A., Becker S.M., Finch A.A., “Biotite equilibria and fluid circulation in the Klokken intrusion”, Journal of Petrology 32 (1991) 1299-1333.

[26] Anderson J.L., Smith D.R., “The effects of temperature and ƒO2 on the Al-in-hornblende barometer”, American Mineralogist 80 (1995) 549–559.

[27] Johnson M.C., Rutherford M.J., “Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California)”, Geology 17 (1989) 837-841.

[28] Blundy J.D., Holland T.J.B., “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer”, Contributions to Mineralogy and Petrology 104 (1990) 208–224.

[29] Schmidt M.W., “Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer”, Contribution to Mineralology Petrology 110 (1992) 304–310.

[30] Ernst W.G., Liu J., “Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB- A semiquantitative thermobarometer”, American Mineralogist 83 (1998) 952-969.

[31] Lünel A.T., Akiman O., “Pseudoleucite from Hamitköy area, Kaman, Kırşehir occurrence and its use as a pressure indicator”, Bulletin of the Mineral Research and Exploration (1986) 29-35.