تشکیل میانبارهای مونازیت و زنوتیم دگرنهادی در کلرآپاتیت‌های کانسار فسفات اسفوردی

نویسندگان

دانشگاه تهران

چکیده

 آپاتیت اصلی­ترین کانی فسفاتی موجود در کانسار اسفوردی است که به­صورت بلورهای کاملاً شکل دار (2-20 سانتیمتر) همرشد با مگنتیت و هماتیت، رگچه‌ای و رگه‌ای رخنمون یافته است. بررسی­های سنگ نگاری حاکی از حضور دو نوع آپاتیت اولیه و ثانویه در این کانسار است. در تصاویر BSE تهیه شده از آپاتیت‌های اولیه، بخش‌های سالم بلور به رنگ روشن و بخش‌های دگرسان شده آن تیره دیده می‌شوند. ترکیب اولیه­ی آپاتیت؛ کلرآپاتیت (مناطق روشن) بوده که در اثر دگرنهادی به­طور بخشی به هیدروکسیل-فلور آپاتیت (مناطق تیره) تبدیل شده است. مناطق روشن آپاتیت از نظر Cl، SiO2، Na2O و Y+LREE غنی شده هستند. میانبارهای مونازیت و زنوتیم درون آپاتیت به دو گروه اولیه (µm30-100) و گرمابی (µm 5-20) قابل تقسیم‌اند که انواع گرمابی در بخش‌های تیره، در محل شکستگی‌ها، میکروحفره­ها و مرز دانه‌ها تشکیل شده‌اند. میانبارهای مونازیت و زنوتیم موجود در بخش‌های تیره به ترتیب از LREE و Y+HREE غنی شده‌اند و با استفاده از ‌دماسنج مونازیت-زنوتیم، دمای حدود C°150-350 را برای آپاتیت دگرنهادی نشان می‌دهند که این به دگرنهادی در شرایط رخساره شیست سبز دلالت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Occurrence of metasomatic monazite-xenotime inclusions in chlorapatites of Esfordi phosphate deposit

چکیده [English]

Apatite is the most common phosphate mineral in the Esfordi ore body. Euhedral crystal (2-20 cm) of the apatite occurs as an intergrowth in magnetite and hematite, vein and dike. There are two types of apatite in the Esfordi deposit, based on Petrographic studies: primary and secendary. Fresh and altered parts of primary apatite display dark and light color respectively using BSE images. EMP analyses demonstrate that primary apatites (light area) were chlorapatite in composition and have been partially changed into hydroxyle-flourapatite (dark area) by the metasomatic process. Lighter areas represent more Cl, SiO2, Na2O and LREE+Y enriched apatites. Monazite and xenotime inclusions in apatite can be classified into two types: primary (30-100µm) and hydrothermal (5-20µm). The hydrothermal inclusions are found in the dark area, apatite crack and along grain boundaries. The monazite and xenotime inclusions in the dark areas are enriched in LREE and HREE+Y respectively. Monazite-xenotime thermometer yielded a temperature of about 150-350°C for apatite metasomatism and hydrothermal monazite-xenotime formation, coincides with greenschist facies conditions.

کلیدواژه‌ها [English]

  • Esfordi phosphate ore body
  • chlorapatite
  • metasomatism
  • monazite
  • xenotime
[1] Jami M., Dunlop A.C., Cohen D.R., “Fluid Inclusion and Stable Isotope Study of the Esfordi Apatite-Magnetite Deposit, Central Iran” Economic Geology 102 (2007) 1111–1128.

[2] Harlov D.E., Andersson U.B., Förster H.J., Nyström J.O., Dulski P., Broman C., “Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden”, Chemical Geology 191 (2002b) 47–72.

[3] تراب ف. م.، "بررسیهای ژئوشیمی و رادیوایزوتوپی برای تعیین خاستگاه آپاتیت در ذخایر آهن و آپاتیت منطقه‎ی معدنی بافق"، مجله بلورشناسی و کانی شناسی ایران 3 (1389) 409-418.

[4] Heinrich W., Andrehs G., Franz G., “Monazite–xenotime miscibility gap thermometry: I. An empirical calibration”, Journal of Metamorphic Geology 15 (1997) 3–17 [15]

[5] Andrehs G., Heinrich W., “Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology”, Chemical Geology 149 (1998) 83-96.

[6] Förster H., Jafarzadeh A., “The Bafq mining district in central Iran—a highly mineralized Infracambrian volcanic field”, Economic Geology 89 (1994) 1697–1721.

[7] Haghipour A., “Geological map of the Biabanak-Bafq area”, Geological Survey of Iran. scale 1:100,000 (1977).

[8] Williams G.J., Houchmandzadeh T.J., “A petrological and genetic study of the Chogart iron body and the surrounding rocks”, Geological Survey of Iran. Unpublished Report (1966) 18.

[9] Hitzman M.W., “Iron oxide-Cu-Au deposits: what, where, when, and why. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper gold & Related Deposits”, A Global Perspective, 1. PGC Publishing, Adelaide, Australia (2000) 9–25.

[10] Hitzman M.W., Oreskes N., Einaudi M.T., “Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits”, Precambrian Reserch 58 (1992) 241–287.

[11] Nyström J.O., Henriquez F., “Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry”, Economic Geology 89 (1994) 820–839.

[12] Zhu C., Sverjensky D.A., “Partitioning of F-Cl-OH between minerals and hydrothermal fluids”, Geochimica et Cosmochimica Acta 55 (1991) 1837-1858.

[13] Harlov D.E., Wirth R., Förster H.J., “An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite”, Contrib. Miner. Petrol 150 (2005) 268–286.

[14] Torab F.M., Lehmann B., “Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology”, Mineralogical Magazine 71 (2007) 347–363.

[15] Harlov D.E., Förster H J., “Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite”, American Mineralogist 88 (2003) 1209–1229.

[16] Fleet M.E., Pan Y., “Site preference of rare earth elements in fluorapatite”, Amer. Min 80 (1995) 329–335.

[17]Anders, E., Grevesse, N., “Abundances of the elements: Meteoritic and solar”, Geochim. Cosmochim. Acta 53 (1989) 197–214.

[18] Kositcin N., Mcnaughton N.J., Griffin B.H., Fletcher I.R., Groves D.I., Rasmussen B., “Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa”, Geochmica et Cosmochemica Acta 67 (4) (2003) 709–731.

[19] Schandl E.S., Gorton M.P., “A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits”, Economic Geology 99 (2004) 1027-1035.

[20] O’Farrely K.S., “A stable isotopic investigation of the origin and evolution of the Kiirunavaara iron mine, northern Sweden”, Ph D Thesis, Univ. of Wales, Cardiff, Wales, United Kingdom (1990).

[21] Monteiro L., Xavier R., Hitzman M., Juliani C., Souza Filho C., Carvalho E., “Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil”, Ore Geology Reviews 34 (2008) 317–336.

[22] Harlov D.E., Förster H.J., Nijland T.G., “Fluid-induced nucleation of REE-phosphate minerals in apatite: Nature and experiment. Part I. Chlorapatite”, American Mineralogist 87 (2002a) 245–261.