Petrology, Mineral-chemistry and thermometry of Sefidkuh Granite and its microgranular felsic enclaves, West of Nehbandan, East of Iran

Abstract

Sefidkuh Granitoid is located west of Nehbandan (South Khorasan Province) east of Lut Block. Compositionally, this granitoid ranges from granite (monzo and synogranite), to granodiorite and tonalite. It has microgranular felsic enclaves with minerals similar to the host body. Major minerals are quartz, plagioclase, microcline, orthoclase, and biotite which were analyzed using electron probe micro-analyzer (EPMA) for thermometry and mineral chemistry studies. Plagioclases in granites are mainly andesine and sometimes albite and in enclaves they are andesine. Anortite content in plagioclase decreases from core to rim, which shows normal zoning of plagioclase. Alkali feldspars in enclaves are sanidine compared to orthoclase in granite. Biotites in granite are primary ferroan and formed in low fo2 and under, reduced condition while biotites in enclaves are primery magnesian and formed in high fo2 and oxidized conditions. Thermometry based on feldspar and biotite compositions yielded about 500-750 ˚C for granite and 650-950 ˚C for enclaves. Mineral chemistry studies indicate that granite (peraluminous magma) and enclaves are derived from a calc-alkaline magma belonging to active continental margin setting.

Keywords


[1] Kaygusuz. A., Siebel. W., Sen C., and Satir M., "Petrochemistry and petrology of I-type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey", International Journal of Earth Sciences 97, (2008) 739-764.

[2] Barbarin. B., "A review of the relationships between granitoid types, their origins and their geodynamic environments", Lithos 46, (1999) 605–626.

[3] Abdel-Rahman A., “Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas”, Journal of Petrology 35(2) (1994) 525-541.

[4] Shabani A.A.T., Lalonde A.E., Whalen J., "Composition of biotite from granitic rocks of the Canadian Appalachian orogen: A potential tectonomagmatic indicator?", The Canadian Mineralogist 41, (2003) 1381-1396.

[5] Moazzen M., Droop G. T. R., "Application of mineral thermometers and barometers to granitoid igneous rocks: the Etive Complex, W Scotland", Mineralogy and Petrology, Volume 83, (2005) 27-53.

[6] Gomes M.E.P., Neiva A.M.R.., "Geochemistry of granitoids and their minerals from Rebordelo–Agrochao area, northern Portugal", Lithos 81, (2005) 235-254.

[7] Zhang S. H., Zhao1 Y., Song B., "Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: implications for the tectonic evolution of the northern margin of North China block", Mineralogy and Petrology 87,( 2006) 123–141.

[8] Mazhari S.A., Bea F., Amini S., Ghalamghash J., "Estimation of pressure and temperature of intrusive rocks crystallization: A case study of Naqadeh, Pasveh and Delkeh plutons, W Iran", Journal of Applied Sciences 8(6), (2008) 934-945.

[9] Shabani A.A.T., Masoudi F., Tecce F., "An Investigation on the Composition of Biotite from Mashhad Granitoids, NE Iran", Journal of Sciences, Islamic Republic of Iran 21(4), (2010) 321-331.

[10] Sahin S.Y., Orgün Y., güngor Y., Goker A.F., Gültekin A.H., Karacik Z., "Mineral and whole-rock geochemistry of the Kestanbol granitoid (Ezine-Çanakkale) and its mafic microgranular enclaves in northwestern Anatolia: evidence of felsic and mafic magma interaction", Turkish Journal of Earth Sciences 19, (2010) 101-122.

[11] Masoudi F., Jamshidi Badr M., "Biotite and Hornblende Composition Used to Investigate the Nature and Thermobarometry of Pichagchi Pluton", Northwest Sanandaj-Sirjan Metamorphic Belt, Iran, Journal of Sciences, Islamic Republic of Iran 19 (4), (2008), 329-338.

[12] Didier J., “Granites and their Enclaves”, Developments in petrology, Elsevier, Amsterdam, London (1973) 393p.

[13] Droop G.T.R., "A general equation for estimating Fe3+ Concentration in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria", Mineralogical Magazine 51 (1987) 431-435.

[14] نادری میقان ن.، اکرمی م.، “نقشه زمینشناسی چاهداشی، مقیاس 100000/1"، سازمانزمینشناسیکشور، (1385).

[15] Deer W.A., Howie R.A., Zussman J., "An introduction to the Rock – forming minerals", Longman, London, (1991) 528 p.

[16] Hall A., "Igneous Petrology (2nd ed)", Longman New York, (1996) 537.

[17] Shelley D., "Igneous and metamorphic rocks under the microscope", Chapman and Hall, (1993) 405.

[19] کریمپور م. ح.، "ژئوشیمی، پترولوژی سنگهای آذرین و کانسارهای ماگمایی"، انتشارات دانشگاه فردوسی مشهد، چاپ اول (1388) ص 545.

[19] Rieder M., Cavazzini G., Yakonov Y.D., Frank-Kanetskii V.A., Gottardi G., Guggenheim S., Koval P.V., Muller G., Neiva A.M.R., Radoslovich E.W., Robert J.L., Sassi F.P., Takeda H., Weiss Z., Wones D.R.,.“Nomenclature of the micas,”Canadian Mineralogist 36 (3) (1998) 905–912.

[20] Lalonde A. E., Bernard P., "Composition and color of biotite from granites: two useful

Properties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay orogeny", Northwest Territories. Canadian Mineralogist 31: (1993) 203–217.

[21] De Pieri R., Jobstraibizer P. G., "Crystal chemistry of biotite from dioritic to granodioritic rock type of Adamello massif (Northern Italy)", Neues Jahrbuch Min Ahb 148 (1983) 58-82.

[22] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., “discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites”, Geomateriala (Mineralogy), Comptes Rendus,Geosciences 337 (2005) 1415-1420

[23] Wones D. R, Eugster H.P., " Stability of biotite: experiment, theory, and application",

American Mineralogist, 50: (1965) 1228-1272.

[24] Wones D.R, Burns R.G, Carroll B.M., “Stability and properties of synthetic annite",

American Geophysical :union: Transactions, 52: (1971) 369.

[25] Partin E, Hewitt D. A, Wones D. R., "Quantification of ferric iron in biotite", Geological Society of American. Abstract with Program, 15: (1983) 656.

[26] Abbot R. N., Clarke D. B., "Hypothetical liquids relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H2O) <1". Canadian Mineralogist 17: (1979) 549-560.

[27] Abdel-Rahman A., “Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas”, Journal of Petrology 35(2) (1994) 525-541.

[28] Nachit H., "Contribution a Iétude analytique et experimental des biotite des granitoids Applications typologiques", These de Doctorat De L’universite de Bretagne accidental (1986) 236p.

[29] Speer J. A., "Mica in igneous rocks", In: Micas, Bailey S. W. (ed); Mineralogical Socity of America, Reviews in Mineralogy and Geochemistry 13 (1984) 299-356.

[30] Foster M. D., “Interpretation of the composition of trioctahedral micas”, U.S. Geological Survey Professional Paper. 354-B (1960) 49.

[31] Patino Douce A.E., "Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences form biotite stability", Chemical Geology 108, (1993) 133-162.

[32] Shand S. J., "The Eruptive Rocks", 2nd edn. New York: John Wiley, (1943) 444 p.

[33] Wones D.R., Eugster, H.P., "Stability of biotite: experiment, theory, and application". American Mineralogist. 50(1965) 1228-1272.

[34] Nockolds S. R., "The relation between chemical composition and paragenesis in the biotite micas of igneous rocks". American Journal of Science., 245, 7, (1947) 401-420.

[35] Koroll H., Evangelakakkis C., Voll G., "Two feldspar Geothermometry: a review and revision for slowly cooled rocks". Contributions to Mineralogy and Petrology (1993) 510–518.

[36] Anderson J. L., "Status of thermo-barometry in granitic batholiths", Earth Science Review 87: (1996) 125- 138.

[37] Brown W.L., Parsons I., "Towards a more practical two – feldspar geothermometer", Contributions to mineralogy and Petrology 76, (1981) 369 – 377.

[38] Henry D. J., Guidiotti C. V., Thomson J. A., “The Ti-saturation surface for low to medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms": American Mineralogist 90 (2005) p. 316.

[39] Guidotti C. V., Sassi F. P., Constraints on studies on metamorphic K-Na white micas. In: A. Mottana, F.P. Sassi, J.B. Thompson, and S. Guggenheim, (Eds)., Micas: "Crystal Chemistry and Metamorphic Petrology. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry", 46, (2002) p. 413–448.

[40] Forbes W. C., Flower M. F. J., "phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: A refractory phase in the upper mantle". Earth and Planetary Science Letters. 22, (1974), 60-66.

[41] Arima M., Edgar A.D., "Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin". Contributions to mineralogy and Petrology. 77, (1981), p. 288-295.

[42] Abrecht J., Hewitt D.A., "Experimental evidence on the substitution of Ti in biotite". A American Mineralogist. 73, (1988), 1275-1284