بررسی کانی‌شناسی و ژئوشیمی گرانیتوئید منطقه‌ی لاله‌زار (بردسیر- استان کرمان)

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

مجموعه­ی گرانیتوئیدی لاله زار، در جنوب شرق کمربند ماگمائی ارومیه-دختر و نوار دهج- ساردوئیه ( استان کرمان) واقع شده است. این توده، از سنگ­های آذرین درونی با ترکیب گرانیتوئیدی تشکیل شده و به درون سنگ­های آتشفشانی-رسوبی ائوسن نفوذ کرده است. سنگ­های آذرین درونی منطقه از گرانیت تا گابرودیوریت تغییر می­کنند اما ترکیبات دیوریت و تونالیت در اکثریت هستند. کانی­های مهم تشکیل دهنده­ی سنگ­های منطقه شامل پلاژیوکلاز سدیم، پتاسیم فلدسپار، بیوتیت، آمفیبول و کوارتز برای سنگ­های گرانیت تا تونالیت و پلاژیوکلاز کلسیک، آمفیبول، بیوتیت و پیروکسن (کلینوپیروکسن، ارتوپیروکسن) برای سنگ­های دیوریت تا گابرودیوریت هستند. تورمالین­زایی ویژگی شاخص رخداد کانی است که در گرانیتوئیدها و آپلیت­های وابسته به آن­ها به­صورت بلورهای منشوری متوسط تا خیلی درشت، بی­شکل تا شکل­دار، رگه ای، انباشت­های شعاعی، نودولار و سوزنی دیده می­شوند. تورمالین­زایی درگرانیتوئیدهای این منطقه در مرحله­ی گرمابی و پنوماتولیتی تحت تأثیر سیالات غنی از بور در شکستگی­های این سنگ­ها صورت گرفته است. در آپلیت­ها تورمالین­زائی به عنوان گرهک­های سرشار از تورمالین احتمالاً نتیجه­ی جدایش گازی (پنوماتولیتیک) در سیالات غنی از بور-سیلیس در مراحل نهائی تبلور رخ می­دهد. گاه جانشینی تورمالین از کناره­ها، شکستگی­ها و صفحات ضعیف شبکه فلدسپات­ها (مانند رخ و ماکل) شروع شده و به قسمت­های دیگر بلورهای یاد شده گسترش یافته است. بررسی­های سنگ­نگاری و ژئوشیمیائی نشان می­دهند که این باتولیت از نوع  Iو کلسیمی- قلیایی است. از نظر موقعیت زمین­ساختی، وابسته به نوع قوس بوده و در یک کمان آتشفشانی حاشیه­ی قاره­ای تشکیل شده است و خاستگاه آن بر اساس بررسی­های REE، یک گوشته­ی گارنت­ دار یا اسپینل­دار است.     

کلیدواژه‌ها


عنوان مقاله [English]

The study of mineralogy and geochemistry of Lalezar Granitoid (Bardsir-Kerman)

چکیده [English]

Lalezar Granitoid Complex is located in the south-east of Urumieh-Dokhtar volcanic belt and Dehaj-Sarduieh belt (Kerman Province). It contains plutonic rocks with granitoid composition and has been intruded into the Eocene volcano-sedimentary rocks. The plutonic rocks have granite to gabbrodiorite composition with dominance of tonalite and diorite rocks. The main mineral phases are sodic plagioclase, k-feldspar, quartz, biotite and amphibole in granite to tonalite, and calcic plagioclase, amphibole, biotite, clinopyroxe and orthopyroxene (hypersthene) minerals in diorite to gabbrodioritic rocks. Tourmalinization is a common feature in the granitoides and related aplites. The tourmalines are seen as medium to coarse-grained prismatic crystals, veinlets, radial assemblages, euhedral to anhedral, nodular and needles. The tourmalinization in granitoids of this area is occurred in hydrothermal and pneumatolitic stages due to infiltration of boron rich fluids in rock fractures. In the aplites, probably, tourmalinization occurred as tourmaline rich nodules due to gas (pneumatolitic) differentiation in silicic- boron rich fluids at the late stage of crystallization. Sometimes the tourmaline emplacement has begun from margins, fractures and weak planes of feldspars lattices (such as cleavage and twining) and extended to other parts of crystals. The geochemical data reveal that the granitoids belong to I-type and Calc-alkaline series. They have emplaced in continental arc and REE studies show that the source rocks could have been garnet or spinel bearing mantle peridotites.

کلیدواژه‌ها [English]

  • Lalezar
  • calc-alkaline
  • granite
  • gabbrodiorite
  • tourmaline
[1] Dimitrijevic Md., "Geology of Kerman region", G.S. A. Rep. Yu/52 ( 1973) 334.

[2] Stöcklin J., "Northern Iran: Alborz Mountains", Geological Society, London, Special Publications 4 (1) (1974) 213-234.

[3] Berberian M., King G. C., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Science 18 (1981) 210-265.

[4] Berberian M., "The southern Caspian: A Compressional depression floored by atrapped, modified oceanic crust", Canadian Journal of Earth Science 20 (1983) 163-183.

[5] Forster H., Feselfeldt K., Kursten M., "Magmatic and orogenic evolution of the central Iranian volcanic belt", Geology Congress Montreal 2 (1972) 198-210.

[6] Mohajjel M., Fergusson Cl., Sahandi MR., "Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran," Journal of Asian Earth Sciences 21 (4) (2003) 397-412.

[7] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24 (4) ( 2005) 405-417.

[8] فاتحی چنار ح.، احمدی پور ح.، مرادیان ع.، "ژئوشیمی و جایگاه زمین‌ساختی توده‌های نفوذی دره زارچوئیه (بردسیرکرمان، جنوب شرق)"، (1390) پترولوژی.

[9] Dargahi S., "Post-collisional Miocene magmatism in the Sarcheshmeh-Shahrebabak region NW of Kerman: Isotopic study, petrogenetic analysis and geodynamic pattern of granitoid intrusives and the role of adakitic magmatism in development of copper minralization", Unpublished Ph. D. thesis, Shahid Bahonar University of Kerman (2007) 310.

[10] Morgan G. B., London VI. D., "Alteration of amphibolitic wallrocks around the Tanco rareelement pegmatite, Bernic Lake, Manitoba", American Mineralogist 72 ( 1987) 1097-1121.

[11] Deer W. A., Howie R. A., Zussman J., "An introduction to the rock forming minerals", Longman (1992).

[12] Jiang S. Y., Palmer M. R., Li Y. H., Xue C. J., "Chemical compositions of tourmaline in the Yindongzi-Tongmugou Pb-Zn deposits, Qinling,China", hnplieations for hydrothermal ore-forming processes: Mineralium Deposita" 30 (1995) 225-234.

[13] Shelley D., "Igneous and metamorphic rocks under the microscope", Chapman & Hall, London, (1993) 445.

[14] Nixon G.T., Pearce T.H., "Laser-interferometry study of oscillatory zoning in plagioclase: the record of magma mixing and phenocryst recycling in calk-alkaline magma chambers", Iztaccihuatl volcano, Mexico. Am. Min., 72 (1987) 1144-62.

[15] Loomis T. P., "Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase", Contrib. Min. Pet., 81 (1982) 219-29.

[16] Hogan J.P., Gilbert M. C., "The A-type Mount Scott granite sheet: Importance of crustal magma traps", Journal of Geology Research 100, B8 (1995) 15779-15792.

[17] Kuno H., "Differentiation of basaltic magma. In Hess, H. H. et Poldervaart", A., edit, Basalts, 2 (1968) 628-688. InterScience pull. New York.

[18] Kleemann G.J., Twist D., "The compositionally-zoned sheet-like granite pluton of the Bushveld complex: Evidence bearing on the nature of A-type magmatism", Journal of Petrology 30 (1989) 1383-1414.

[19] Vance J A., "Polysynthetic twinning in plagioclase", Am. Min 46 (1961) 1097-119.

[20] Dowty E., "Synneusis reconsidered", Contrib. Min. Pet. 74 (1980) 75-84.

[21] Bramal A., Harwood H. F. , "Tourmalization in the dartmoor granite", Min. Magazine, 20 (1925) P.319.

[22] London D., Manning D.A.C., "Chemical Variation and Significance of tourmaline from southwest England", Economic Geology 90 (1995) 495-519.

[23] Sinclair W.D., Richardson J.M., "Quartztourmaline orbicules in the seagull batholith, Yukon Territory", The Canadian Mineralogist 30 (1992) 923-935.

[24] ملائی ح.، "کانی شناسی نوری"، انتشارات دانشگاه آزاد اسلامی مشهد (1385).

[25] De La Roche H., Leterrier J., Grande Claude P., Marchal M., "A Classification of volcanic and plutonic rocks using R1-R2 diagrams and major elements analyses- its relationship and current nomenclature", Chemical Geology 29 (1980) 183-210.

[26] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey", Contributions to mineralogy and petrology 58 (1) (1976) 63-81.

[27] White A. J. R., Chappell B. W., "Granitoid types and their distribution in the Lachland fold belt, southern Australia", The Geological Society of America 154 (1983) 21-34.

[28] Pearce J. A., Harris N. B. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology 25 (1984) 956-983.







[29] Sun S., McDonough W. F., "Chemical and isotopic systematic of oceanic basalts: implication for Mantel composition and processes. In: Saunders A. D., and Norry M. J., (eds), Magmatism in ocea basins", Geological Society, London - Special Publications 42 (1989) 313-345.

[30] Boynton WV., "Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry", Elsevier, Amsterdam (1984) 63–114.

[31] Rollinson H. R., "Using geochemical data: evalution, Presentation", interpretation: Longman, UK, (1993) 352.

[32] Lin P. N., Stern R. J., Bloomer S. H., "Shoshonitic volcanism in the northern Mariana arc: 2. Large ion lithophile and rare earth element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs", J Geophys Res 94 (1989) 497–514. InterScience pull. New York.

[33] Henderson P., "Rare earth element geochemistry", Elsevier, Amsterdam (1984).

[34] Teppern J.H., Nelson B.K., Bergantz G.W., Irving A.J., "Petrology of the Chilliwack batholith, north Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity", Contribution to Mineralogy and Petrology 113 (1993) 333–351.