ژئوشیمی گرانیت پرآلومینیوس دومیکایی میلونیتی پل نوغان، غرب استان اصفهان

نویسندگان

دانشگاه شهرکرد

چکیده

توده گرانیتوئیدی نوغان در شمال غربی شهرستان بویین- میان دشت و در پهنه­ی سنندج- سیرجان قرار گرفته ‌است. بر اساس بررسی‌های صحرایی و سنگ نگاری، این توده یک گرانیت دو میکائی محسوب می‌شود که به­شدت تحت تأثیر دگرشکلی قرار گرفته است. کانی‌های اصلی تشکیل‌دهنده­ی این سنگ­ها شامل کوارتز، فلدسپات‌ قلیایی )میکروکلین و پرتیت(، پلاژیوکلاز، بیوتیت و مسکویت است. همچنین دارای کانی­های فرعی شامل مونازیت، آپاتیت، اپیدوت، زوئزیت، کلینوزوئزیت، آلانیت و کانی‌های کدر است که زمینه­ی سنگ را تشکیل می­دهند. بر اساس بررسی­های صحرایی، سنگ­نگاری و زمین شیمیایی، سنگ­های توده نفوذی پل نوغان در گروه گرانیتوئیدهای پرآلومینیوس MPG و PLGS قرار می‌گیرند. ماهیت ماگما آهکی قلیایی تا آهکی قلیایی پتاسیم بالا با سرشت پرآلومینیوس است. در نمودارهای تغییرات عناصر کمیاب بهنجار شده به کندریت و گوشته­ی اولیه (عنکبوتی)، الگوی عناصر REE شیب منفی داشته، بی­هنجاری مشخص منفی از Eu دارند و در آن­ها غنی‌شدگی از LREE و LILE، تهی‌شدگی از HREE و HFSE و بی­هنجاری منفی عناصر Ti, P, Nb, Sr و بی­هنجاری مثبت Cs, K, Pb نشان می­دهند و از نظر زمین­ساخت جهانی در جایگاه پسا از برخورد (Post-Colg) قرار دارند. زمین‌شیمی عناصر فرعی و کمیاب حاکی از ذوب بخشی متاپلیت­ها در بخش­های بالایی پوسته­ی ضخیم شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry of two mica per-aluminous mylionitic granite in Noghan Bridge, Sanandaj-Sirjan Zone

چکیده [English]

Noghan granitoid intrusion is located at the NW of Boin- Miandasht and lies in the Sanandaj-Sirjan structural zone (SSZ). Based on field evidence and petrographic studies, the pluton is considered as two-mica granite that has been strongly affected by deformation and shows a good mylonitic foliation study area. The main minerals in the pluton are quartz, alkali feldspar (microcline and perthite), plagioclase, biotite, muscovite and the accessory minerals are monazite, apatite, epidote, zoisite, clinozoisite, allanite and opaque minerals which form the rock groundmass. Petrographic and geochemical studies indicate that the Noghan bridge plutonic rocks are of MPG and PLGS types, having calc-alkaline to high potassium calc-alkaline and peraluminous nature. On chondrite and primitive mantle-normalized spider diagrams, the REE pattern has a negative slope and definite negative anomaly of Eu, and they display enrichment of LILE and LREE and depletion of HREE and HFSE, along with negative anomalies of Nb, Sr, P, Ti and positive anomalies of Cs, K, Pb which are typical of magmatism in subduction-zone environment especially leucogranites in the active continental-margin.The tectonic settings of the leucogranite is post orogenic environment. The geochemistry of accessory and trace minerals suggest derivation from partial melting of meta pelites in the upper part of thickened crust

کلیدواژه‌ها [English]

  • Two mica granite
  • peraluminous
  • post-orogenic granitoid
  • Noghan Bridge
  • Sanandaj-Sirjan Zone
[1] Saleh G.M., El-Nisr S.A., "Tow Mica Granites, Southeastern Desert, Egypt: Geochemistry and Spectrometric Prospecting", Journal of Geology and Earth Sciences 1(2) (2013) 23-42.

[2] Procházka V., Uher Dobroslav P. J K.A. M., "Zn-rich ilmenite and pseudorutile: subsolidus products in peraluminous granites of the Melechov Massif, Moldanubian Batholith, Czech Republic", Neues Jahrbuch Fur Mineralogie-Abhandlungen 187/3(2010) 249–263.

[3] Zen E., "Phase relations of peraluminous granitic rocks and their petrogenetlc implications", Annual Review of Earth and Planetary Sciences (1988)16 21-51.

[4] Tingyu C., Guiying S., Yupeng Y., Huilan C., "Peraluminous granites of East Tethys and their implication in Gondwana dispersion and Asian accretion", Journal of Asian Earth Sciences 11(1995) 243- 251.

[5] Nabelek P. I., Liu M., "Petrologic and thermal constraints on the origin of leucogranites in collisional orogens", Transactions of the Royal Society of Edinburgh: Earth Sciences 95(2004) 73–85.

[6] Goswami T. K., "Geodynamic significance of leucogranite intrusions in the Lohit batholith near Walong, eastern Arunachal Pradesh, India", Research Communications 104(2013) 229-234.

[7] Mohajjel M., Fergusson C.L., "Dextral transpression in late Cretaceous continental collision, Sanandaj- Sirjan Zone, western Iran", Journal of Structural Geology 22(2000) 1125-1139.

[8] Chiu H., Chung S., Zarrinkoub M. H., Mohammadi S. S., Khatib M. M., Iizuka Y., "Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neo-Tethys subduction and Zagros orogeny", Lithos 162-163(2013) 70-87.

[9] Esna-Ashari A., Tiepolo M., Valizadeh M.V., Hassanzadeh J., Sepahi A. A., "Geochemistry and zircon U–Pb geochronology of Aligoodarzgranitoid complex, Sanandaj-Sirjan Zone, Iran", Journal of asian earth sciences 43(2012) 11-22.

[10] Thiele O., Alavi-Naini M., Assefi R., Hushmand- Zadeh A., Seyed-Emami K., Zahedi M., "Explanatory text of the Golpaygan quadrangle map 1:250000, Geological quadrangle N. E7.Geological Survey of Iran, Tehran, Iran", (1968).

[11] Braud J., Bellon H., "Donnesnouvellessur le domainemetamorphique du Zagros (zone de Sanandaj-Sirjan) au niveau de Kermanshah-Hamadan; nature, age et interpretation des seriesmétamorphiques et des intrusions évolution structural", Faculté des Sciences d'Orsay, Université Paris (1974).

[12] آقانباتی ع.، "زمین شناسی ایران"، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران (1385).

[13] درویش زاده ع.، "زمین شناسی ایران، چینه شناسی، تکتونیک، دگرگونی و ماگماتیسم"، انتشارات امیرکبیر، تهران، (1385).

[14] محجل م.، افتخارنژاد ج.، "نقشه 1:100000 گلپایگان"، سازمان زمین شناسی و اکتشافات معدنی کشور"(1371).

[15] Law R.D., Casey M., Knipe R.J. , "Kinematic and tectonic significance of microstructures and crystallographic fabrics within quartz mylonites from the Assynt and Eriboll regions of the Moine thrust zone, NW Scotland", Transactions of the Royal Society of Edinburgh 77(1986) 99–125.

[16] Vernon R. H., "A Pratical guide to rock microstructure", Cambridge University press, United Kingdom (2004) 594.

[17] Hibbard M. J., "Petrography to petrogenesis", Prentice Hall, New Jersey (1995) 587.

[18] Broska I., Petrik I., Terry Williams C., "Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, WeCarpsternathians", American Mineralogist (2000).

[19] Middlemost E.A.K., "Magmas and magmatic rocks", London, Longman (1985) 453P.

[20] Frost B. R., "A geochemical classification for granitic rocks", Journal of Petrology 42(2001) 2033-2048.

[21] Barbarin B., "A review of the relationships between granitoid types, their origin and their geodynamic environment", Lithos 46(1999) 605-626.

[22] PatinoDouce A. E., "What do experiments tell us about therelative contributions of crust andmantle to the origins of graniticmagmas? In: A. Castro, C. Fernandez and Vigneresse, J. L. (Eds.): Understanding granites: Integrating new and classical techniques", Geological Society of London,Special Publication 168(1999) 55-75.

[23] Abdallah S., Khaleal F. M., Rashed M. A., "Characteristics of Madinat Nugrus peraluminous leocogranite carrier of radioactive minerals, southeastern Desert, Egypt", Journal of Mineral and Mining Engineering 7(2013) 15-34.

[24] Dong Y., Zhang G., Neubauer F., Liu X., Hauzenberger C., Zhou D., Li W., "Syn- and post-collisional granitoids in the Central Tianshanorogen: Geochemistry, geochronology and implications for tectonic evolution", Gondwana Research 20(2011) 568–581.

[25] Petro W.L., Vogel T.A., Wilband J.T., "Major elements chemistry of plutonic rock suites from compressional and extensional plate boundaries", Chemical Geology, 26(1979): 217-235.

[26] Peccerillo R., Tylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, north Turky", Contributions to Mineralogy and Petrology 58(1976) 63-81.

[27] Harris N., Inger S., Massey J., "The role of fluids in the formation of High Himalayan leucogranites", In:M. P. Searle and P. J. Treloar (Eds.), Himalayan Tectonics.Geological Society of London, Special Publications, 74(1993) 391- 400.

[28] Pearce J. A., Harris N. W., Tindle A. G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology 25(1984): 956-983.

[29] Bikramaditya Singh R. K., "Origin and emplacement of the Higher Himalayan Leucogranite in the Eastern Himalaya: Constraints from geochemistry and mineral chemistry", Journal of Geological Society of India 81(2013) 791-803.

[30] Boynton W. V., "Cosmo chemistry of the rare earth elements: meteorite studies", Rare Earth Element Geochemistry. Developments in Geochemistry 2 (Henderson, R., ed.) (1984) 89-92. Elsevier, Amsterdam.

[31] Sun S. S., McDonough W. E., "Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders, A.D., Norry, M. J. (Eds), Magmatism in the Ocean Basins", Geological Society Special Publication, London 42(1989) 313-345.

[32] Kebede T., Koeberl C., Koller F., "Magmatic evolution of the Suqii-Wagga garnet-bearing two mica granite, Wallagga area, western Ethiopia", Journal of African Earth Sciences 2(2001) 193-221.

[33] Sylvester P. J., "Post-Collisional Strongly Peraluminous Granites", Lithos 45(1998) 29-44. [34] Koh J. S., Yun S. H., "The geochemistry of Yuksipryeong two-mica leucogranite, Yeongnam massif, Korea", The Journal of the Petrological Society of Korea 12 (2003): 119-134.

[35] Pearce J.A., "Sources and settings of granitic rocks", Episodes 19 (1996) 120–125.

[36] Batchelor R.A., Bowden P, "Petrogenetic interpretation of granitoid rock series using multicationic parameters", Chemical Geology 48(1985) 43–55.