Mineralogy and geochemistry of the Teminan bentonite deposit, southwest of Naeen, Isfehan Province

Abstract

The Teminan bentonite deposit is located in ~25 km southwest of Naeen, Isfehan Province. This deposit has layered and massive form and is an alteration product of tuff breccias of Oligo-Miocene age. Mineralogical data show that montmorillonite, heulandite, clinoptilolite, quartz, anorthite, orthoclase, calcite, beidellite, illite, and microcline are the principal rock-forming minerals in this deposit. Distribution pattern of REEs normalized to chondrite indicate an intense differentiation of LREEs from HREEs accompanied by occurrence of negative Eu anomaly during bentonitization. Geological data suggest that the alteration processes of tuff breccias to bentonite in this area occurred in an open system, and leaching and fixation processes were two principal regulating factors in concentration of most trace and rare earth elements. By considering the obtained results, it seems that acidic pH and its variation degree, adsorption, inhomogeneity of parent rock composition, incorporation in crystal lattice, difference in degree of complexation with sulfate, chloride, and fluoride ligands, diagenesis, ionic exchange, residual concentrations, and difference in degree of stability of minerals against alteration are the key controlling factors for distribution of elements during evolution of the Teminan bentonite deposit.

Keywords


[1]حجازی م.، قربانی م.، "بنتونیت- زئولیت"، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1373) 128ص.

[2] قربانی م.،" اکتشاف و پی‌جویی بنتونیت‌های ایران و مسائل زمین‌شناسی وابسته به آنها"، رساله کارشناسی ارشد دانشگاه شهید بهشتی، (1370) 173ص.

[3] Hints R., Kirsimäe K., Somelar P., Kallaste T., Kiipli T., "Multiphase Silurian bentonites in the Baltic Palaeobasin", Sedimentary Geology, 209 ( 2008) 69-79.

[4] Savage D., Walker C., Arthur R., Rochelled C., Odae C., Takase H., "Alteration of bentonite by hyperalkaline: A review of the role of secondary minerals", Physics and Chemistry of the Earth, 32 (2007) 287-297.

[5] مهروری ر.، نقره‌ئیان م.، مکی زاده م.، پورنقشبند ع.، " بررسی کانی شناسی و ژئوشیمیایی کانسار بنتونیت مهرآباد (شرق اصفهان)"، مجله بلورشناسی و کانی شناسی ایران، سال نوزدهم، شماره 1 (1390) ص 3-14.

[6] بازرگانی گیلانی ک.، ربانی م. ص.، ″ کانی شناسی، مشخصات شیمیایی و تکوینی بنتونیت ته نشست های ائوسن منطقه افتر (غرب سمنان)″، مجله بلورشناسی و کانی شناسی ایران، سال دوازدهم، شماره 2 (1383) ص169- 188.

[7] نبوی م ح.،″دیباچه ای بر زمین شناسی ایران″، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، (1355) 105ص.

[8] امینی ب.، امینی چهرق م.، "نقشه زمین شناسی 1:100000 کجان"، سازمان زمین‌شناسی و اکتشافات معدنی کشور، برگه شماره 6555 (1382).

[9] Kretz R., "Symbols for rock-forming minerals", American Mineralalogists, 68 (1983) 277-279.

[10] Winchester J. A., Floyd, P. A., "Geochemical discrimination of different magma series and their diferentiation products using immobile elements", Chemical Geology 20 (1977) 325-343.

[11] Grant J. A., ″The isocon diagram-a simple solution to gresens equation for metasomatic alteration″, Economic Geology, 81 (1976-1982).

[12] Laviano R., Mongelli G., ″Geochemistry and mineralogy as indicators of parental affinity for Cenozoic bentonites: a case study from S. Croce Di Magliano (southern Appennines, Italy)″, Clay Minerals, 31 (1996) 391-401.

[13] Muchangos A. C., "The mobility of rare-earth and other elements in process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambigue)", Journal of Geochemical Exploration, 88 (2006) 300-303.

[14] Munch P., Duplay J., Cocheme J. J., "Alteration of silicic vitric tuffs interbedded in volcanoclastic deposites of the Southern Basin and Range Province, Mexico", Evidences for Hydrothermal Reactions, 44 (1996) 49-67.

[15] Zeilinski R. A.,″The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome formation, Colorado, U.S.A″, Chemical Geology 35 (1982) 185-204.

[16] Evensen G. R., Hamilton P. J., Onions R .K., "Rare earth abundances in chondritic meteorites", Geochimica et Cosmochimica Acta, 42 (1978) 1199-1212.

[17] Eliason J. R., "Montmorillonite exchange equilibra with strontium-sodium-cesium", American Mineralogists, 51 (1966) 324-335.

[18] Goldstein S. J., Jacobsen S. B.," Rare earth element in river waters", Earth and Planetary Science Letters, 89 (1988) 35-47.

[19] Pandarinath K., Dulski P., Torres-Alvarado I. S., Verma S. P.,″ Element mobility during the hydrothermal alteration of rhyolitic rocks of the los Azufres geothermal field Mexico″, Geothermics, 37 (2008) 53-72.

[20] Ma J., Wei G., Xu Y., Long W., Sun W., "Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China", Geochimica et Cosmochimica Acta 71 (2007) 3223-3237.

[21] Rollinson H., "Using geochemical data: evalution, presentation, interpretation", 1993, 352p.

[22] Sverjiensky D. A., "Europium redox eqilibria in aquilibria in aqeous solution", Earth and Planetary Science Letters, 67 (1984) 70-78.

[23] Laufer F., Yariv S., Steinberg M.,"The adsorption of quadrivalent Cerium by Kaolinite", Clay Minerals, 19 (1984) 137-149.

[24] ] Lopez J. M. G., Bauluz B., Nieto C. F., Oliete A. Y.," Factors controlling the trace elements distribution in fine- grained rocks: the Albian Kaolinite- rich deposits of the Oliete Basin(NE Spain)", Chemical Geology, 214 (2005) 1-19.

[25] Aja S. U.,"The sorption of rare earth element, Nd to kaolinite at 25°C", Clays and Clay minerals, 46 (1998) 103-109.