Release of Mg from sepiolite mineral under the influence of two organic acids

Abstract

Organic acids, such as malic, citric, and oxalic, play important roles in agricultural soils. They can affect chemical and physical properties of the rhizosphere and therefore, increase cation and anion concentration in soil solution. This increases the uptake of elements by plants. A factorial experiment with a completely randomized design was conducted to investigate and compare the influence of two organic acids (oxalic and citric), two pH values (6 and 4), two concentrations (1 and 10 mM) and two sizes of mineral particles (5 and 50 micron) in different contact times (2, 6, 12, 24, 48, 72, 168 hours) on the release of Mg from sepiolite. For each experiment, a control was run. All experiments were conducted using three replications. Results revealed that the amount of Mg released from sepiolite particles in citric acid treatments was much more than those of oxalic acids. Results also illustrated that with the increase in shaking time and concentration of both organic acids and the decrease in pH value and the size of particles, the release of Mg from sepiolite mineral increased. However, it seems that among all parameters studied, the size of sepiolite particles has the least influence on the Mg release.

Keywords


[1] Rasmussen R.A., Borggaard O.K., Hansen H.C.B., Olsson M., “Effect of natural organic soil solutes on weathering rates of soil minerals”, Soil Science 49 (1998) 397-406.

[2] Marschner H., “Mineral nutrition of higher plants”. Academic Press. London (1995).

[3] Wang J.G., Zhang, F.S., Zhang X.L., Cao Y.P., “Release of potassium from K-bearing minerals: effect of plant roots under P deficiency”, Nutrient Cycling in Agroecosystems 56 (2000) 45-52

[4] Jones D. L., Darrah P. R., “Influx and efflux of organic-acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow”, Plant and Soil 173 (1995) 103-109.

[5] Strobel W., “Influence of vegetation on low molecular-weight carboxylic acids in soil solution, A review”, Geoderma 99 (2001) 169-198.

[6] Sposito G., “The chemistry of soil”. Oxford. University Press. New York (1989).

[7] Hinsinger P., Elsass, F., Jaillard B., Robert M., “Root-induced irreversible transformation of trioctahedral mica in the rhizosphere of rape”, Soil Science 44 (1993) 535-545.

[8] Tu S. X., Guo Z. F., Sun. J. H., “Effect of oxalic acid on potassium release from typical Chinese soils and Minerals”, Pedosphere 17(2007) 1-10.

[9] Kodama H., Schnitzer M., Jaakkimainen M., “Chlorite and biotite weathering by fulvic acid solutions in closed and open systems”, Canadian Journal of Soil Science 63 (1983) 619-629.

[10] Huang W.H., Keller W.D., “Dissolution of rock-forming silicate minerals in organic acids: Simulated first stage weathering of fresh mineral”, American mineralogists 55 (1970) 2076-2094.

[11] Stumm W., Furrer G., Kunz B., “The role of surface coordination in precipitation and dissolution of mineral surfaces”, Croatica Chemica Acta 56 (1983) 593-611.

[12] Singer A., “Palygorskite and sepiolite group minerals”. In: Dixon, J.B. and S.B. Weed (Eds.), Minerals in soil Environments. Soil Science Society of America, Madison, WI, (1989) 829-872.

[13] Serratosa J.M., “Surface properties of fibrous clay minerals (palygorskite and sepiolite”. In: Mortland, M .M., Farmer V .C., (Eds.), Proceeding of International Clay Conference (1979).

[14] Russel E. W., “Soil Conditions and Plant Growth”. Longman. London (1961) 1014 p.

[15] Carter D. L., Mortland M.M., Kemper, W.D., “Specific surface”. In: Klute, A. (ed.), Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, (1996) pp. 413-423.

[16] نوروزی س.، خادمی ح.، “آزادسازی پتاسیم از موسکویت و فلوگوپیت توسط چند اسید آلی”، مجله آب و خاک، شماره 23 (1388) ص 273-263.

[17] Singer A., Stahr K., Zarei M.,”Characteristics and origin of sepiolite (Meerschaum) from Central Somalia”, Clay Minerals 33 (1998) 349-362.

[18] Pohlman A.A., McColl J., “Kinetics of metal dissolution from forest soil by soluble organic Acids”. Journal of Environmental Quality 15 (1986) 86-92.

[19] بحرینی طوحان م.، دردی پور ا.، موحدی نایینی س، ع.، “سرعت رهاسازی پتاسیم غیر تبادلی با استفاده از اسید سیتریک و کلرید کلسیم رقیق در خاک‌های زراعی سری‌های غالب استان گلستان”، مجله علوم و فنون کشاورزی و منابع طبیعی، مجله علوم آب و خاک، شماره 14(1389) ص 126-113.

[20] Jones D. L., “Organic Acids in the rhizosphere -A critical review”, Plant and Soil 205 (1998) 25- 44.

[21] Albert, A., Serjean E.P., “The Determination of Ionization Constants”, Third, Edition Chapman and Hall, London (1984).

[22] Drever, J. I., Stillings L. L., “The role of organic acids in mineral weathering”, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 120 (1997)167-181.

[23] Zhang H., Bloom P. R. “Dissolution kinetics of hornblende in organic acid solution”, Soil Science Society of America Journal 63 (1999) 815-822.

[24] Bolan, N.S., Naidu R., Mahimairaja, S., Baskaran S., “Influence of low-molecular-weight organic-acids on the solubilization of phosphates”, Biology and Fertility of Soils 18 (1994) 311-319.

[25] Manley E. P., Evans L. J., ”Dissolution of feldspars by low molecular weight aliphatic and aromatic acids”. Soil Scienc 141 (1986) 106-112.

[26] Miura A., Nakazawa K, Takei T., Kumada N., Kinomura N., Ohki R., Koshiyama H.,”Acid, base, and heat induced degradation behavior of Chinese sepiolite”, Ceramics International 38 (2012) 4677– 4684.

[27] Giustetto R., Wahyudi, O., Corazzari I., Turc F.,”Chemical stability and dehydration behavior of a sepiolite/indigo Maya Blue pigment”, Applied Clay Science 52 (2011) 41–50.

[28] Ozdemir M., , Kipcak I.”Dissolution kinetics of sepiolite in hydrochloric acid and nitric acid”, Clay and Clay Minerals 6 (2004) 714-720.

[29] Boyle J. R., Voigt G. K., Sawhney B. L., “Chemical weathering of biotite by organic acids”, Soil Science 117(1974) 42-45.

[30] Chin P.K.F., Mills G. L., “Kinetics and mechanisms of kaolinite dissolution: effects of organic ligands”, Chemical Geology 90 (1991) 307-317.

[31] Cubillo A.E., Zapardiel R.P., Moya J.S., Barba M.F., Pecharroman C., “The role of magnesium on the stability of crystalline sepiolte structure”, Ceramic Society 28 (2008) 1763-1768.

[32] Reitemeire R.F. “The chemistry of soil potassium”, Advances in Agronomy 3 (1951) 113-164.

[33] حاتمی م.، کریمی .، ع ر.، فتوت ا.، خادمی ح.، ″بررسی تأثیر اندازه ذرات و نوع عصاره گیر بر شکل‌های مختلف پتاسیم برخی کانی های میکایی و فلدسپات پتاسیم”، مجله پژوهش های حفاظت آب و خاک، شماره20 (1392) ص 115-132.

[34] Snall S., Liljefors T., “Leachability of major elements from minerals in strong acids”, Journal of Geochemical Exploration 71 (2000) 1-12.