Geochemistry and petrogenesis of Adakitic rocks from the Kiyamaki magmatic dome, southeast Jolfa (NW Iran)

Abstract

Composition of the Kiyamaki dome has mostly dacite and granodiorite in rims, with SiO2 contents ranging from 64 to 73 wt% and Mg# values ranging from 27 to 57. These rocks are high-Si adakite. Geochemical characteristics and Sr and Nd isotopic rates indicate that the rocks of Kiyamaki dome are a post-collisional adakite. Combined geochemical and Sr–Nd isotope data suggest that the Kiyamaki adakitic magma derived from partial melting of mafic rocks in the lower part of a thickened crust. So, with attention to tectonic setting and source of derived adakitic magma, age of Eocene to Miocene for generation and closing time of Neo-Tethys (Middle Miocene), it is not possible that generation of Kiyamaki adakites be directly related to geodynamical evolution of Neo-Tethys. Here, with suppose of age information  for generation of Kiyamaki dome and closing of Neo-Tethys,formation of domes in the northern part of Tabriz fault can be related to the collision of Sanandaj-Sirjan micro-continual with Alborz-Azarbaijan block in Paleogene that was happened due to subduction of oceanic crust of Khoy-Zanjan basin toward beneath of Alborz-Azarbaijan block.

Keywords


[1] Wang Q., Xu J., Jian P., Bao Z., Zhao Z., Li C., Xiong X., "Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization", Jouranl of Petrology 47(2006) 119–144.

[2] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24 (2005) 405–417.

[3] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet, L., "Arcmagmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences", Lithos 106 (2008) 380–398.

[4] Jahangiri A., "Post-collisional Miocene adakitic volcanism in NW Iran:Geochemical and geodynamic implications", Journal of Asian Earth Sciences 30 (2007) 433–447.

[5] Asadian A., "Geological map of Tabriz, 1:250000", Geological Survey of Iran (1993).

[6] Alavi M., "Tectonics of the Zagros Orogenic belt of Iran: new data andinterpretations", Tectonophysics, 220 (1994) 211–238.

[7] Nabavi M., "An introduction to geology of Iran", GSI Publication, Tehran (1976).

[8] Aghanabati A., "Geology of Iran", GSI Publication, Tehran (2004).

9 افتخار نژاد ج.، عبداللهی م.، حسینی م.، "گزارش نقشه زمین شناسی ورقه جلفا با مقیاس 100000/1", سازمان زمین شناسی و اکتشافات معدنی کشور1375

[10] Middlemost E. A. K., "Naming materials inthe magma/igneous rock system", Earth Science Reviews 37 (1994) 215–224.

[11] Winchester J.A., Floyd P.A., "Geochemical discrimination of different magma series and their differentiation products using immobile elements", Chemical Geology 20 (1977) 325-343.

[12] Orhan Karsli O., Dokuz A., Uysal İ., Aydin F., Kandemir R., Wijbrans J., "Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination", Lithos 114 (2010) 109–120.

[13] Pearce J.A., Peate D.W., "Tectonic implications of the composition of volcanic arc magmas". Annual Review of Earth and Planetary Sciences 23 (1995) 251–285.

[14] Ayers J.C., Watson E.B,. "Solubility of apatite, monazite, zircon, and rutite in super critical fluids with implications for subduction zone geochemistry", Phil. Trans. R. Soc. London A, 335 (1991) 365-375.

[15] Pearce J.A., "The role of sub-continentallithosphere magma genesis at destruction platemargin, In continental basalts and mantle Xenolites" (1983).

[16] Sun S.S., MC Donough W.F., "Chemical andisotopic systematics of oceanic basalts:implications for mantle composition andprocesses", In: Saunders, AD. And Norry , M.J.(eds), Magmatism in oceanic basins. Geological Society of London Special Publication, 42 (1989) 313-345.

[17] Petrone CM, Francalanci L, Ferrari L, Schaaf P, Conticelli S., "The San Pedro–Cerro GrandeVolcanic Complex (Nayarit, Mexico): inferenceson volcanology and magma evolution ", In: Siebe C, Aguirre-Déaz G, Macéas JL (eds) Neogene-Quaternary continental margin volcanism: aperspective form Mexico. Geological Society of America, 402(2006), 65–98.

[18] Mo X.X., Hou Z.Q., Niu Y.L., Dong G.C., Qu X.M., Zhao Z.D., Yang Z.M., "Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet", Lithos 96 (2007) 225–242.

[19] Guo Z.F., Wilson M., Liu J.Q., "Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust", Lithos 96 (2007) 205– 224.

[20] Zhu D-C., Zhao Z-D., Pan G-T., Lee H-Y., Kang Z-Q., Liao Z-L., Wang L-Q., Li G-M., Dong G-C., Liu B., "Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt–peridotite interaction?" Journal of Asian Earth Sciences 34 (2009) 298–309.

[21] Foley S , Tiepolo M., Vannucci. R., "Growth of early continental crust controlled by melting of amphibolite in subduction zones", Nature 417 (2002) 837-840.

[22] Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., "An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution", Lithos 79 (2005) 1–24.

[23] Stern C.R., Kilian R., "Röle of the subductedslab, mantle wedge and continental crust in thegeneration of adakites from the Austral Volcanic Zone", Contributions to Mineralogy and Petrology, 123(1996)263–281.

[24] Peacock S.M., Rushmer T., Thompson A.B., "Partial melting of subducting oceanic crust", Earth and Planetary Science Letters 121(1994) 227-244.

[25] Martin H., "Adakitic magmas: modern analogues of Archaean granitoids", Lithos 46 (1999) 411– 429.

[26] Atherton M.P., Petford N., "Generation of sodium-rich magmas from newly underplated basaltic crust", Nature 362 (1993) 144– 146.

[27] Rollinson H. R., Tarney J., 2005. "Adakites- The key to understanding LILE depletion in granulites", Lithos 79, 61-81.

[28] Moharami F., Gorbani M., Pourmoafee M., Mirmohammadi M., "Age, Origin and Tectono-Magmatic Pattern of the Formation of Kimaki Adakitic Dome, Southeast of Julfa (Northwest of Iran)", Arabian Journal of Geosciences (under review).

[29] Azizi H., Moinevaziri H., "Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran", Journal of Geodynamics 47 (2009) 167–179.

[30] Mehdipour Ghazi, J. M., Moazzen, M., Rahgoshay M., Moghadam H. S., "Geochemical characteristics of basaltic rocks from the Nain ophiolite (Central Iran); constraintson mantle wedge source evolution in an oceanic back arc basin and a geodynamical model", Tectonophysics, 574–575 (2012) 92–104.

[31] Alishah F., Jahangiri A., "Post-collisional pliocene to pleistocene adakitic volcanism in Sahand region in Northwest Iran: Geochemical and geodynamic implications", Physical Sciences Research International 1(2013), 62-75.

[32] Hajalilou B., Moayyed M., Hosseinzadeh G., "Petrography, geochemistry and geodynamic environment of potassic alkaline rocks in Eslamy peninsula, northwest of Iran". Journal of Earth System Science, 118 (2009) 643–657.

[33] Azizi H., Jahangiri A., "Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran", Journal of Geodynamics 45 (2008) 178–190.

[34] Wang Q., Wyman D.A., Zhao Z.H., Xu J.F., Bai Z.H., Xiong X.L., Dai T.M., Li C.F., Chu Z.Y., "Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implication for Phanerozoic crustal growth of Central Asia Orogenic Belt", Chemical Geology 236 (2007), 42–64.

[35] Xu, J.F., Shinjio R., Defant M.J., Wang Q., Rapp R.P., "Origin of Mesozoic adakitic intrusive rocks In the Ningzhen area of east China: partial melting of delaminated lower continental crust?, " Geology 12 (2007), 1111–1114.