Mineralogy, geochemistry, and fluid inclusion studies of Kuh-Sorbi Barite-lead ± copper deposit, northeast of Iran

Abstract

The Kuh-Sorbi barite-Pb ± Cu deposit, which is located southeast of Mashhad in Khorasan Razavi Province of Iran, occurs as vein, open space filling, host rock replacement, and cement within the fault breccia in the Upper Triassic Nayband Formation metamorphosed carbonate rock unit. This deposit contains of barite (80–85%) and galena (10–15%), with small amounts of chalcopyrite and quartz. Barite is marked by very low concentrations of Sr (2.5–3%) and belongs to the barite end-member of the barite-celestite solid solution series. Hydrothermal alteration, such as silicification and dolomitization, provided appropriate physical and chemical conditions that permitted the passage of ore-bearing fluids and participated in precipitation and ore localization. Carbonate-hosted ore contains ~1% Pb, ~0.15% Cu, and maximum 288 ppm Sb, whereas Ag (< 40 ppm) and Bi (<10 ppm) is very low.  In addition, concentrations of Ag, Bi, and Sb in separated galena samples ranged from 12 to 175 ppm, 43 to 101 ppm, and 137 to 270 ppm, respectively. The ratios of Sb/Bi in galena from the Kuh-Sorbi deposit range from 2.25 to 5.63 indicate medium-temperature galena, which formed at medium pressure. The galena samples are Sb-rich. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that barite and ore minerals were precipitated by a medium-temperature (250 to 386ºC) low-saline (4.9 to 1.8 wt. % NaCl equivalent) solution originated possibly from a metamorphic fluid. Temperature decreasing may have played an important role during barite–Pb ± Cu mineralization. Based on geology, mineralogy, texture and fluid characteristics, the Kuh-Sorbi deposit is classified as a mesothermal-type deposit.

Keywords


[1] Hanor J. S., “Barite-celestite geochemistry and environments of formation”, In: Alpers CN, Jambor JL, Nordstorm DK (ed) Sulfate minerals: crystallography, geochemistry, and environmental significance. Reviwes in Mineralogy and Geochemistry 40 (2000) 193–263.

[2] Sangster D. F., Burtt M. D., Kontak D. J., “Geology of the B baseline zone, Walton Cu-Pb-Zn-Ag, Ba deposit, Nova Scotia”, Economic Geology 93 (1998) 869–882.

[3] Ravenhurst C. E., Reynolds P. H., Zentilli M., Krueger L. W., Blenkinsop J., “Formation of Carboniferous Pb-Zn and barite mineralization from basin-derived fluids, Nova Scotia, Canada”, Economic Geology 84 (1989) 1471–1488.

[4] Sangster D. F., Savard M. M., Kontak D. J., “A genetic model for mineralization of Lower Windsor (Viséan) carbonate rocks of Nova Scotia, Canada”, Economic Geology 93 (1998) 932–952.

[5] Ghorbani M., “The economic geology of Iran: mineral deposits and natural resources”, Springer, New York (2013).

[6] USGS., “Barite (Advance Release)”, US Geol Surv Miner Yearb-2009 (2011).

[7] Bodnar R. J., “Revised equation and table for determining the freezing point depression of H2O-NaCl solutions”, Geochimica et Cosmochimica Acta 57 (1993) 683–684.

[8] Brown P. E., Lamb W. M., “P-V-T properties of fluids in the system H2O ± CO2 ± NaCl: new graphic presentations and implications for fluid inclusion studies”, Geochimica et Cosmochimica Acta 53 (1989) 1209–1221.

[9] Ghasemi A., Talbot C. J., “A new tectonic scenario for the Sanandaj-Sirjan zone (Iran)” Journal of Asian Earth Sciences 26 (2006) 683–693.

[10] Eftekharnezhad J., Alavi Naini M., Behruzi A., “Geological Map of Kariznow 1:100,000”, Geological Survey of Iran (1984).

[11] Seyed-Emami K., “Triassic in Iran”, Facies 48 (2003) 91–106.

[12] Hautmann M., Fürsich F. T., Senowbari-Daryan B., Seyed-Emami K., “The Upper Triassic Nayband and Darkuh formations of east-central Iran: Strtigraphy, facies pattern and biota of extensional basins on an accreted terrane” Beringeria 35 (2005) 53–133.

[13] Kluyver H. M., Tirrul R., Chance P. N., Johns G. W., Meixner H. M., “Explanatory text of the Naybandan Quadrangle map”, Geological Survey of Iran (1978).

[14] Dunham R. J., “Classification of carbonate rocks according to deposition texture”, In Classification of Carbonate Rocks (Ed. By Ham W. E.,), (1962) p. 108-121. American Association Petrology and Geology 1.

[15] Haghipour A., “Etude geologique de la region de Biabanak-Bafq (Iran-Central); petrologie et tectonique du socle Precambrien et de sa couverture”, PhD Thesis, Universite Scientifique et Medicale de Grenoble, France, (1974) 403 p.

[16] رحیم‌پور بناب ح.، " سنگ‌شناسی کربناته: ارتباط دیاژنز و تکامل تخلخل"، انتشارات دانشگاه تهران (1384) 487 ص.

[17] Leach D. L., Sangster D. F., Kelley K. D., Large R. R., Graven G., Allen C. R., Gutzmer J., Walters S., “Sediment-hosted lead-zinc deposits: a global perspective”, Economic Geology 100th Anniversary (2005) 561–607.

[18] Whitney D. L., Evans B. W., “Abbreviations for names of rock-forming minerals”, American Mineralogist 95 (2010) 185–187.

[19] Marshal R. R., Joensuu O., “Crystal habit and trace element content of some galena”, Economic Geology 56 (1961) 758–771.

[20] Amcoff O., “Distribution of silver in massive sulfide ores”, Mineralium Deposita 19 (1984) 63–69.

[21] Roedder E., “Fluid Inclusions”, In: Ribbe PE (ed) Reviews in Mineralogy, 12, Mineral Soci Am, Washington DC, (1984) p. 1–644.

[22] Shephered T. J., Rankin A. H., Alderton D. H. M., “A practical guide to fluid inclusion studies”, Blackie, London (1985).

[23] Hass J. L., “Effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure”, Economic Geology 66 (1971) 940–946.

[24] Malakhov A. A., “Bismuth and antimony in galenas as indicators of some conditions of ore formation”, Geochemistry International 7 (1968) 1055–1068.

[25] Sverjensky D. A., “The diverse origin of Mississippi valley type Pb-Zn-Ba-F deposits”, Chorn Rech Min 495 (1989) 5–13.

[26] Wilkinson J. J., “Fluid inclusions in hydrothermal ore deposits”, Lithos 55 (2001) 229–272.



[27] Kesler E. S., “Fluids in Planetary Systems: ore-Forming Fluids”, Elements 1 (2005) 13–18.

[28] Volkov A. V., Prokofiev V. Y., Alekseev V. Yu., Baksheev I. A., Sidorov A. A., “Ore-forming Fluids and Conditions of Formation of Gold-Sulfide-Quartz Mineralization in the Shear Zone: Pogromnoe deposit (Eastern Transbaikalian region)”, Dokilady Acad Nauk 441 (2011) 352–357.