Petrography and geochemistry of dolomites from Derinjal Formation in east and southeast of Zarand- NW Kerman

Abstract

Carbonate deposits of Derinjal Formation (Late Cambrian) studied in three stratigraphic sections (east of Zarand) and is composed of dolostone, stromatolitic boundstone and sandstone with interbeded thin layers of marls. Based on petrography evidences (grain size and fabric) and geochimecal data (δ 18O and δ 13C isotopes and elemental analysis such as Fe, Mn, Na,Sr, Ca and Mg), four types of dolomite were identified that forms as primary and secondary. The primary dolomite (D1) is fine crystal with primary sedimentary structure such as palanar and cross laminations while the secondary dolomites are mostly replacement as fine (D2-S) and medium crystal (D2-L) size as well as pore-filling or fractures (D3). On the basis of these data, dolomites have formed pencontemporaneous with deposition and during early diagenetic history to deep burial conditions. Elemental analysis as well as increasing trend of Sr and Na versus Mg and decreasing trend of Fe and Mn versus Mg from D1 to D3 associated with decreasing of δ18O from fine to coarse crystalline dolomites reflect the increasing alteration and reduction as result of deep burial.

Keywords


[1] Chilingar G.V., “Relationship Between Ca/Mg Ratio and Geological Age”, American Association Petroleum Geology Bulletin 40 (1956) 2256-2266.

[2] Given R.K., Wilkinson B.H., “Dolomite abundance and stratigraphic age: constraints on rates and mechanisms of phanerozoic dolostone formation”, Journal of Sedimentary Petrology 57 (1987) 457-469.

[3] Hood A.V.S., Wallace M.W., "Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitati no” Sedimentary Geology 255–256 (2012) 56-71.

[4] لاسمی ی.، "رخساره ها، محیط‌های رسوبی و چینه نگاری سکانسی نهشته سنگ‌های پرکامبرین بالایی و پالئوزئیک ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور. (1379) 180 ص.

[5] Dickson J. A. D., “Carbonate identification and genesis as revealed by staining”, Journal of Sedimentary Petrology 36 (1966) 441–505.

[6] Sibley D. F., Gregg J. M., “Classiffication of dolomite rock textures”, Journal of Sedimentary Petrology 57 (1987) 967–975.

[7] Zhang J., Hu W., Qian Y., Wang X., Cao J., Li J.Z.Q., Xie X., “Formation of saddle dolomites in Upper Cambrian carbonates, western TarimBasin (northwest China): Implications for fault-related fluid flow”, Marine and Petroleum Geology 26 (2009) 1428–1440.

[8] Zhao H., Jones B., “Genesis of fabric-destructive dolostones: A case study of the Brac Formation (Oligocene), Cayman Brac, British West Indies”, Sedimentary Geology 267-268 (2012) 36–54.

[9] Rao C.P., “Modern Carbonates”, Hobart, University of Tasmania, Australia, 206 (1996).

[10] Al-Aasm I.S., “Chemical and isotopic constraints for recrystalization of sedimentary dolomites from the Western Canada Sedimentary Basin”, Aquatic Geochemistry 6 (2000) 227-248.

[11] Al-Aasm I.S., Packard J.J., “Stabilization of early-formed dolomite: a tale of divergence from two Mississippian dolomites”, Sedimentary Geology 131(2002) 97-108.

[12] Gao G., “Geochemical and isotopic constraints on the diagenetic history of a massive stratal, late Cambrian (Royer) dolomite, Lower Arbuckle Group, Slick Hills, SW Oklahoma, USA”., Geochimica et Cosmochimica Acta 54 (1990) 1979–1989.

[13] Tucker M.E., Wright V.P., “Carbonate Sedimentology ”, Blackwell, Oxford (1991) 482.

[14] Gregg J.M., Shelton K.L.,“Dolomitization and neomorphism in the back reef facies of the Bonneterre and Davies Formations (Cambrian), southeastern Missouri”, Journal of Sedimentary Petrology 60 (1990) 549-562.

[15] Arvidson R.S., Mackenzie F.T., “The dolomite problem: control of precipitation kinetics by temperature and saturation state”, American Journal of Science 299 (1999) 257–288.

[16] Whittaker S., Rostron B.J., Khan D., Hajnal Z., Qing H., Penner L., Maathuis H., Goussev S., “Theme 1: Geological characterization”, in Wilson M., Monea M., (eds.), IEA GHG Weyburn CO2 Monitoring and Storage Project Summary Report 2000-2004; Seventh International Conference on Greenhouse Gas Control Technologies, Petroleum Technology Research Centre3 (2004) 15-69.

[17] Yuia T.F., Gong S.H., “Stoichiometry effect on stable isotope analysis of dolomite” , Chemical Geology 201 (2003) 359-368.

[18] Touir J., Soussi M., Troudi, “Polyphased dolomitization of a shoal-rimmed carbonate platform: example from the Middle Turonian Bireno dolomites of central Tunisia”, Cretaceous Research 30 (2009) 785–804.

[19] Barnaby R.J., Read J.F.,“Dolomitization of a carbonate platform during late burial: Lower to Middle Cambrian Shady dolomite, Virginia Appalachians”, Journal of Sedimentary Petrology 62 (1992) 1023- 1043.

[20] Budd D. A., “Cenozoic dolomites of carbonate islands: their attributes and origin”, Earth Science Review 42 (1997) 1–47.

[21] Gasparrini M., Bechstadt T., Boni M.,“Massive hydrothermal dolomites in the Southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution”, Marine and Petroleum Geology 23 (2006) 543-568.

[22] Reinhold C., “Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany”, Sedimentary Geology 121 (1998) 71–95.

[23] Warren J., Dolomite: “occurrence, evolution and economically important associations”, Earth Science Review 52 (2000) 1–81.

[24] Machel H. G., “Concepts and models of dolomitization: a critical reappraisal”, In: Braithwaite, C. J. R., Rizzi G, Darke G, (Eds.), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London Special. Publication. 235 (2004) 7–63.

[25] Choquette P. W., Hiatt E. E., “Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites”, Sedimentology 55 (2008) 423–460.

[26] Reeder R. J., Prosky J. L.,“Compositional sector zoning in dolomite”, Journal of Sedimentary Petrology 56 (1986) 237–247.

[27] آدابی م.، "ژئوشیمی رسوبی"، انتشارات آرین زمین. (1383) 448 صفحه.

[28] Adabi M.H., Rao C.P., “Petrographic, elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (e.g. from Iran and England): 13th Geological Convension”, Australia, (Abstract) 6. (1996)

[29] Al-Aasm I.S., Veizer J., “Diagenetic stabilization of aragonite & low-Mg calcite, I. Trace element in rudists”, Journal of Sedimentary Petrology 59 (1986) 138-145.

[30] Choquette P.W., James N.P.,“Diagenesis in Limestones -3, the deep burial environment”, Geoscience Canada 14 (1987) 3-35.

[31] Nelson C. S., Smith A. M., “Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review, New Zealand”, Geology and Geophysics 39 (1996) 93–107.

[32] Zhang Sh., Qing H., Meng X., “Petrography and geochemistry of the Cambrian dolomite reservoirs in TarimBasin NW China: A case study based on deep cores sampled at depths of 7200–8500 m”, Geochemical Exploration 101 (2009) 123.

[33] Veizer J ., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S., Godderis Y., Jasper T., Korte C., Pawellek F., Podlaha O.G., Strauss H., “87Sr ⁄ 86Sr and d13C and d18O evolution of Phanerozoic seawater” Chemical Geology 161(1999) 59–88.

[34] Behrens E.W., Land L.S., “Subtidal Holocene dolomite, Baffin Bay, Texas”, Journal of Sedimentary Petrology 42 (1972) 155-161.

[35] Wacey D., Wright D., Boyce A., “A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia”, Chemical Geology 244 (2007) 155–174.

[36] Saller A.H., Moore C.H., “Meteoric diagenesis, marine diagenesis and microporosity in Pleistocene and Oligocene limestones, Eniwetok Atoll, Marshall Islands”, Sedimentary Geology 63 (1989) 253–272.

[37] Wheler P., Aharon R.E. Ferrell., “Successions of Late Cenozoic platform dolomites distinguished by texture, geochemistry, and crystal chemistry: Niue, South Pacific”, Journal of Sedimentary Research 69 (1999) 239–255.

[38] Land L.S., “The origin of massive dolomite”, Journal of Geology Education 33 (1985) 112-125.

[39] Given R. K., Wilkinson B.H.,“Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates”, Journal of Sedimentary Petrology 55 (1985) 109-119.

[40] Qing H., Mountjoy E.W., “Multistage dolomitization in Rain bow buidups, Middle Devonian Keg River Formation, Alberta, Canada”, Sedimentary Research 59 (1989) 114-126.

[41] Qing H., Bosence W. J., Rose E., “ Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar western Mediterranean”, Sedimentology 48 (2001) 153-163.

[42] Sternbach C.A., Friedman G.M., “Ferroan carbonates formed at depth require porosity well log correction: Hunton Group, Deep Anadarko Basin (Upper Ordovician to Lower Devonian) of Oklahoma and Texas. Transactions of Southwest Section”, American Association of Petroleum Geologists Bulletin (1984) 167-173.

[43] Adabi M.H., “Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet-Dagh Basin, N.E. Iran”, Carbonates and Evaporites 24 (2009) 16-32