تعیین شرایط فیزیکوشیمیایی و عوامل کنترل کننده‌ی کانه‌زایی با استفاده از کانه‌نگاری، روابط پاراژنزی و میان‌بارهای سیال در کانسار استیبنیت- طلا شورچاه، جنوب شرق زاهدان

نویسندگان

دانشگاه سیستان و بلوچستان

چکیده

کانسار آنتیموان شورچاه، در منطقه­ی فلیش شرق ایران واقع شده است. در این منطقه کانه­زایی آنتیموان در رگه­های سیلیسی، تشکیل شده است. گرانیتوئیدهای به شدت سیلیسی و برشی شده و سنگ­های دگرگون درجه­ی پایین غنی از کانی­های فیلوسیلیکاتی، میزبان این رگه­ها هستند. استیبنیت کانه اصلی آنتیموان در رگه­هاست و در ارتباط با پیریت، آرسنوپیریت و طلاست. سنارمونتیت و سروانتیت از اکسیدهای آنتیموان موجود در کانسار شورچاه هستند. سنگ­های میزبان به طور بالقوه قادر به ایجاد کردن اسیدی شدگی لازم برای ته­نشینی استیبنیت- طلا بوده­اند. بر اساس روابط پاراژنزی و داده­های ترمودینامیکی، استیبنیت فاز پایدار آنتیموان در کانسار مورد بررسی است که نهشت آن با کاهش دما و کاهیدگی کنترل می­شود، به جز در شرایط قلیایی که اسیدی شدن عامل اصلی کانه­زایی است. استیبنیت و طلا در کانسار شورچاه می­توانند در غلظت­های قابل ملاحظه­ای به صورت همبافت­های بی­سولفیدی حمل شده و با کاهش pH نهشته شده باشند. دمای همگن­شدگی و شوری­ میان­بارهای سیال در کوارتزهای همراه با رگه­های معدنی به ترتیب از 5/146 تا 9/327 درجه­ی سانتیگراد و 21/0 تا 71/5 درصد وزنی نمک طعام تغییر می­کند که بیانگر وجود یک شاره­ی جوی بوده و کانه­زایی نوع وراگرما تا مزوترمال را به اثبات می­رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Physico-chemical conditions and controlling factors of mineralization, using mineralogy, paragenetic relations and fluid inclusions in the Shurchah Stibnite-Gold Deposit, southeast of Zahedan

چکیده [English]

Shurchah antimony deposit is located in flysch zone of eastern Iran. The antimony mineralization was formed in silicic veins that hosted by highly silicified and brecciated granitoids and low-grade metamorphic rocks which are rich in phyllosilicate minerals. Stibnite is the most aboundant Sb-bearing ore mineral in the veins and is associated with pyrite, chalcopyrite, arsenopyrite and gold. Senarmontite and cervantite are antimony oxides present in the deposit. The host rocks were potentially able to cause the acidification needed to induce stibnite-gold mineral precipitation. Based on paragenetic relations and thermodynamic data, stibnite is the stable antimony phase in the study deposit and its deposition is controlled by temperature decrease and reduction, except under alkaline conditions where acidification is the principal cause of mineralization. Both stibnite and gold can be transported in appreciable concentrations in the form of bisulfide complexes and their deposition occurred by pH decreases. Homogenization temperature and salinity of fluid inclusions in quartz crystals associated with mineralized veins, are 146.5 to 327.9˚C and 0.21 to 5.71 wt.% NaCl eq. respectively suggesting a meteoric origin for ore-bearing fluid and these values confirm  the epithermal to mesothermal type of mineralization.

کلیدواژه‌ها [English]

  • stibnite-gold
  • physico-chemical condition
  • fluid inclusions
  • Ore mineralization
  • Shurchah
  • Zahedan
[1] Gumiel P., Arrubas A., “Antimeny Deposits in the Iberian Pininsula”, Economic Geology 52 (1987) 1453-1463.

[2] Neiva A. M. R., Andráš P., Ramos J. M. F., “Antimony quartz and antimony–gold quartz veins from northern Portugal”, Ore Geology Reviews 34 (2008) 533-546.

[3] Dill H. G., Melcher F., Botz, R., “Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand: with special reference to their metallogenetic position in SE Asia”, Ore Geology Reviews 34 (2008) 242-262.

[4] Janković S., “The ore deposits of Serbia (Yugoslavia), Regional metallogenic settings, environments of deposition, and types (in Serbian)”, Faculty of mining and geology, Belgrade (1990) 799 p.

[5] Neiva A. M. R., Andráš P., Ramos J. M. F., “Antimony quartz and antimony- gold quartz veins from northern Portugal”, Geochimica et Cosmochimica Acta Supplement 70 (2006) A442-A442.

]‌6[ ش‍رک‍ت‌ م‍ع‍دنی‌ زرک‍ن‌ مینرالز.، "گ‍زارش‌ ن‍ه‍ای‍ی‌ اک‍ت‍ش‍اف‌ ک‍انی‌س‍ازی‌ آن‍تیم‍وان‌ در گستره‌ شور چ‍اه"، (1383).

]‌7[ ایتوک ایران.، "گزارش اکتشاف آنتیموان در منطقه شورچاه و توزگی"، وزارت صنایع و معادن، سازمان توسعه و نوسازی معادن و صنایع معدنی ایران، شرکت تهیه و تولید مواد معدنی ایران، (1386).

]8[ مرادی ر.، "سبک و منشاء کانی‌زایی آنتیموان و طلا در شورچاه، جنوب‌شرق زاهدان"، پایان نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، (1391)، 159 صفحه.

[9] Johnson J. W., Oelkers E. H., Helgeson H. C., “SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0̊ to 1000̊C”, Computers and Geosciences 17 (1991) 899-974.

]10 [آقانباتی ع.، "زمین‌شناسی ایران"، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1383)، 606 صفحه.

[11] Wilkinson J. J., “Fluid inclusion in hydrothermal ore deposits”, Lithos 55 (2001) 229- 272.

[12] Hedenquist J.W., “Mineralization associated with volcanic-related hydrothermal system in the Circum-Pacific Basin”, In: Horn, M.K., Editor, 4th Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986, Transactions: American Association of Petroleum Geologists, Tulsa, Oklahoma (1987) 513-524.

[13] Roedder E., “Fluid Inclusions”, Mineralogical Society of America, Reviews in Mineralogy 12 (1984) 2644p.

[14] Rossetti P., Colombo F., “Adularia- sericite gold deposits of Marmato (Caldas, Colombia): Field and petrographic data” In: McCaffrey K. J. W., Lonergan L., Wilkinson J. J., (Eds), (1999) “Fractures, Fluid Flow and Mineralization”, Geological Society of London 155 (1999).

[15] Williams-Jones A. E., Normand C., “Controls of mineral parageneses in the system Fe-Sb-S-O”, Economic Geology 92 (1997) 308-324.

[16] Normand C., Gauthier M., Jébrak M., “The Québec Antimony deposit: An example of gudmundite-native antimony mineralization in the ophiolitic mélange of the southeastern Québec Appalachians”, Economic Geology 91 (1996) 149-163.