همخوانی دماسنجی ماکل دگرشکل کلسیت در سنگ‌های آهکی و زمین-دماسنجی کلریت‌های توده‌ی گابرویی سرکوبه

نویسندگان

دانشگاه شهرکرد

چکیده

منطقه­ی سرکوبه در شهرستان خمین و در بی­ثبات­ترین منطقه­ی زمین­ساختی (سنندج - سیرجان) قرار گرفته است. این منطقه­ی شامل انواع مختلفی از سنگ­های رسوبی و آذرین از جمله سنگ­های آهکی تجدید تبلور یافته، سنگ­های سیلیسی و گابروها (گابرو قلیایی) هستند. کانی­های اصلی گابروها پلاژیوکلاز، کلینوپیروکسن و کدر بوده، و کانی­های بیوتیت، آمفیبول، کوارتز، آپاتیت و زیرکن به عنوان کانی فرعی، به علاوه کلریت، پرهنیت و آمفیبول نماینده­ای از کانی­های حاصل از تجزیه هستند. با توجه به بافت کانی­های تشکیل­دهنده سنگ، این سنگ­ها دگرگون در زیر رخساره­ی شیست سبز تا رخساره­ی شیست سبز بوده­اند. بنابر بررسی­های سنگ نگاری انجام شده، بر روی کانی کلسیت از سنگ‌های آهکی تجدید تبلور یافته، ماکل دگرشکلی از نوع III و IV است. ماکل­های دگرشکل دینامیکی تبلور دوباره­ی­ کلسیت را که در دمای بالاتر از C°200 و حتی بیشتر از C°250 رخ داده است را نشان می­دهند. همچنین براساس دماسنجی صورت گرفته روی کانی کلریت، دمای تبلور این کانی­ از C°297 تا C°309 (C° 7/1±1/301) تشخیص داده شده است، که با نتایج به­دست آمده، با دمای دگرشکلی در ماکل­های کلسیت همخوانی دارد.     

کلیدواژه‌ها


عنوان مقاله [English]

Thermometry corresponding from deformation twining of calcite in limestones and chlorites geothermometry in Sarkobeh gabbroic body.

چکیده [English]

Sarkobeh area is located north of Khomein in the most unstable tectonic zone (Sanandaj - Sirjan). In the area, exposed rocks are limestone, quartzitic rocks and  gabbro (alkaline gabbro). The main minerals in rocks are, plagioclase, clinopyroxene and opaque, while the accessory minerals include biotite, amphibole, quartz, apatite, zircon as and chlorite and prehnite - pumpellyite are  representative of the alteration minerals. According to the texture of the rock forming minerals of the gabbro rock at the greenschist facies, metamorphism of greenschist facies have been endured.  Petrographical studies were carried out on the mineral calcite in the marbles and twins deformation of type III and IV showed that calcite deformation temperature is in the range of 200°C to more than 250°C. According to the chlorite mineral thermometry, minerals have formed at 296 °C to 309°C.

کلیدواژه‌ها [English]

  • deformation twining
  • geothermometry
  • chlorite
  • Sarkoobeh
  • Khomein
  • Sanandaj-Sirjan
[1] Barber D.J., Wenk H.R., Gomez-Barreiro J., Rybacki E., Dresen G., "Basal slip and texture development in calcite: new results from torsion experiments", Physics and Chemistry of Minerals 34 (2007) 73–84.

[2] Ferrill D.A., Morris A.P., Evans M.A., Burkhard M., Groshong R.H. Jr., Onasch C.M., "Calcite twin morphology: a low-temperature deformation geothermometer", Journal of Structural Geology 26 (2004) 1521–1529.

[3] Turner F.J., Griggs D., Heard H.C., "Experimental deformation of calcite crystals", Geological Society of America Bulletin 65 (1954) 883–934.

[4] Burkhard M., "Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review", Journal of Structural Geology 15 (1993) 351-368.

[5] Barnett M.R., "Twinning and the ductility of magnesium alloys", Materials Science and Engineering A 464 (2007) 1–7.

[6] Beyerlein I. J., Tomé C.N., "Adislocation-based constitutive law for pure Zr including temperature effects", International Journal of Plasticity 24 (2008) 867–895.

[7] Astafurova E.G., Chumlyakov Y.I., "Strain hardening upon twinning of [111], [144], and [011] single crystals of hadfield steel", Physics of Metals and Metallography 108 (2009) 510– 518.

[8] Blenkinsop T., "Deformation Microstructures and Mechanisms in Minerals and Rocks", Kluwer Academic Publishers, New York (2002).

[9] Cathelineau M., Nieva D., " A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system", Contributions to Mineralogy and Petrology 91 (1985) 235-244.

[10] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay Minerals 23 (1988) 471–485.

[11] Martinez-Serrano R. G., Dubois M., "Chemical variations in chlorite at the Los Humeros geothermal system, Mexico", Clays and Clay Minerals 6 (1998) 615-628.

[12] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock-forming minerals", 2nd edition, Longman, London (1992).

[13] Caritat P. D., Hutcheon I., Walshe J. L., "Chlorite geothermometry: a review", Clays and Clay Minerals 41 (1993) 219-239.

[14] Klein E.L., Koppe J. C., "Chlorite geothermometry and physicochemical conditions of gold mineralization in the paleoproterozoic Caxias deposit, Sao Luis craton, northern Brazil", Geochimica Brasiliensis 14 (2000) 219-232.

[15] A´rkai P., Mata M. P., Giorgetti G., Peacor D. R., To´th M., "Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study", Journal of Metamorphic Geology 18 (2000) 531-550.

[16] Willner A. P., Hervé F., Massonne H., "Mineral chemistry and pressure–temperature evolution of two contrasting high-pressure–low-temperature belts in the Chonos Archipelago, Southern Chile", Journal of Petrology 41(3) (2000) 309-330.

[17] Moazzen M., "Chlorite-chloritoid-garnet equilibria and geothermometry in the Sanandaj-Sirjan metamorphic belt, southern IRAN", Iranian Journal of Science and Technology. Transaction A, 28 (A1) (2004) 65-78.

[18] Guidotti1 C. V., Sassi F. P., Comodi P., Zanazzi P. F., Blencoe J. G., "Slaty cleavage: does the crystal chemistry of layer silicates play a role in its development?", The Canadian Mineralogist 43(1) (2005) 311-325.

[19] Lee S. S., Guggenheim S., Dyar M. D., Guidotti C. V., "Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from metamorphosed rocks", American Mineralogist, 92(5-6) (2007) 954-965.

[20] Shabani T. A. A., "Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians", Journal of Sciences, Islamic Republic of Iran 20 (3) (2009) 265-275.

[21] Ciesielczuk J., "Chlorite from hydrothermally altered Strzelin and Borow granites (the for Sudetic block) An attempt of cholorite geothermometry application", Mineralogical Society of Poland – Special Parers 20 (2002) 74-76.

[22] Walshe J. L., "A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems", Economic. Geology 81 (1986) 681-703.

[23] Thiele O., "Zum alter der metamorphose in Zentral Iran", Mitteilungen der Geologischen Gesellschaft in Wien 58) 1966( 87-101.

[24] زمانی پدرام م.، حسینی ح.، شیخ الاسلامی م.ر.، هفت لنگ ر.، "نقشه زمین‌شناسی چهارگوش محلات با مقیاس 100000/1"، سازمان زمین شناسی و اکتشافات معدنی کشور (1386).

[25] اکبری م.، نصراصفهانی ع.، امامی ه.، وهابی مقدم ب.، "پترولوژی و ژئوشیمی توده نفوذی شمال خمین و بررسی پتانسیل معدنی منطقه مورد مطالعه،" پایان‌نامه کارشناسی ارشد، دانشگاه آزاد خوراسگان، 1388ص 1-146.

[26] سخایی ز.، داودیان دهکردی ع ر.، شبانیان بروجنی ن.، پایداری م.، " ژئوشیمی و موقعیت تکتونیکی سنگ‌های بازیک غرب سرکوبه (شمال خمین)"، پایان‌نامه کارشناسی ارشد، (1393) ص.117-1.

[27] آقانباتی ع.، 1385، "زمین‌شناسی ایران" سازمان زمین‌شناسی کشور، تهران، (1385) ص 586-1.

[28] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation", International Journal of Earth Sciences 94 (2005) 401-419.

[29] Braud J., "Les formations du Zagros dans la re´gion de Kermanshah (Iran) et leurs rapports structuraux", Comptes Rendus Academie Sciences 271(1970) 1241–1244.

[30] Talebian M., Jackson J., "Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone", Geophysical Journal International 150 (2002) 422–439.

[31] Dachs E., "PET: Petrological elementary tools for mathematica: an update", Computers and Geoscience 30 (2004) 173-182.

[32] Droop G. T. R., "A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria", Mineralogical Magazine 51 (1987) 431-437.

[33] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187.

[34] Rybacki E., Evans B., Janssen A., Wirth R., Dresen G., "Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments", Journal tectonophysics 21(4) (2013) 17.

[35] Turner F. J., "Nature and dynamic interpretation of deformation lamellae in calcite of

three marbles", American Journal Science 251 (1953) 276-298.

[36] Janssen C., Romer R. L., Hoffmann-Rothe A., Kesten, D., Al-Zubi H., "The Dead Sea transform: evidence for a strong fault?", Journal of Geology 112 ( 2004) 561–575.

[37] Lacombe O., "Calcite twins, a tool for tectonic studies in Thrust Belts and Stable Orogenic Forelands", Oil and Gas Science and Technology 65 (6) (2010) 809-838.

[38] Ferrill D. A., "Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone", Journal of Structural Geology 13 (1991) 667–675.

[39] Ferrill D. A., "Critical re-evaluation of differential stress estimates from calcite twins in coarse-grained limestone", Tectonophysics 285 (1998) 77–86.

[40] Passchier C. W., Trouw R. A. J., "Atlas of Mylonites - and related microstructures", 2nd edition, Springer, Verlag. Berlin (2010).

[41] Hurlbut J., Klein C., "Manual of mineralogy", John Wiley. Newyork (1977).

[42] Lanari P., Guillot S., Schwartz S., Vidal O., Tricart P., Riel N., Beyssac O., "Diachronous evolution of the alpine continental subduction wedge: evidence from P-T estimates in the Brianc¸onnais Zone houille`re (France—Western Alps)", Journal of Geodynamic 56–57 (2012) 39–54.

[43] Lanari P., Wagner Th., and Vidal O., "A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry", Contributions to Mineralogy and Petrology 167 (2014) 968.

[44] De Andrade V., Vidal O., Lewin E., O’Brien P., Agard P., "Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples", Journal Metamorphic Geology 24 (2006) 655–668.

[45] Yamato P., Agard P., Burov E., Le Pourhiet L., Jolivet L., Tiberi C., "Burial and exhumation in a subduction wedge: mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustre´s, western Alps)", Journal Geophysical Research 112: (2007) B07410.

[46] Schwartz, S., Tricart, P., Lardeaux, J. M., Guillot, S. and Vidal, O., "Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes luste´s, western Alps): evidences for tilting during Alpine collision", Geological Society of America Bulletin 121 (2009) 502–518.

[47] Tarantola A., Mullis J., Guillaume D., Dubessy J. de Capitani C., Adbelmoula M., "Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 C in the external part of the Central Alps, Switzerland", Lithos 112 (2009) 497–510.

[48] Plissart, G., Femenias, O., Maruntiu, M., Diot, H., Demaiffe, D., "Mineralogy and geo- thermometry of grabbro-derived listevenites in the Tisovita-Iutu ophiolite, Southwestern Romania", Canadian Mineralogist 47 (2009) 81–105.

[49] Saravanan, C. S., Mishra, B. and Jairam, M. S., "P-T conditions of mineralization in the Jonnagiri granitoid-hosted gold deposit, eastern Dharwar Craton, southern India: constraints from fluid inclusions and chlorite thermometry", Ore Geology Reviews 36: (2009) 333–349.

[50] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of chemical geothermometry to lowtemperature trioctahedral chlorites", Clays Clay Minerals 57 (2009) 371–382.

[51] Inoue A., Kurokawa K., Hatta T., "Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan", Research Geology 60 (2010) 52–70.

[52] Verlaguet A., Goffe´ B., Brunet F., Poinssot C., Vidal O., Findling N., Menut D., "Metamorphic veining and mass transfer in a chemically closed system: a case study in Alpine metabauxites (western Vanoise)", Journal Metamorphic Geology 29 (2011) 275–300.

[53] Ganne J., de Andrade V., Weinberg R. F., Vidal O., Dubacq B., Kagambega N., Naba S., Baratoux L., Jessell M., Allibon J., "Modern-style plate subduction preserved in the Palaeoproterozoic West African craton", Nature geoscience 5 (2012) 60–65.

[54] Grosch E. G., Vidal O., Abu-Alam T., McLoughlin N., "PTconstraints on the metamorphic evolution of the Paleoarchean Kromberg type-section, Barberton Greenstone Belt, South Africa", Journal Petrology 53 (2012) 513–545.

[55] Bourdelle F., Parra T., Chopin C., Beyssac O., "A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions", Contributions Mineralogy Petrology 165 (2013a) 723–735.

[56] Pourteau A., Sudo M., Candan O., Lanari P., Vidal O., Oberha¨nsli R., "Neotethys closure history of Anatolia: insights from 40Ar-39Ar geochronology and P-T estimation in high pressure metasedimentary rocks", Journal Metamorphic Geology 31 (2013) 585–606.

[57] Cantarero, I., Lanari P., Vidal O., Alias G., Trave´ A., Baque´s V., "Long-term fluid circulation in extensional faults in the central catalan coastal ranges: P-T constraints from neoformed chlorite and K-white mica", International Journal Earth Science. doi:10.1007/s00531-013-0963-8 (2013).

[58] Lanari P., Rolland Y., Schwartz S., Vidal O., Guillot S., Tricart P., Dumont T., "P-T-t estimation of syn-kinematic strain in low-grade quartz-feldspar bearing rocks using thermodynamic modeling and 40Ar/39Ar dating techniques: example of the Plande- Phasy shear zone unit (Brianc¸onnais Zone, Western Alps)",Terra Nova. doi:10.1111/ter (2013b) 12079.

[59] Hey M. H., "A new review of the chlorites", Mineralogical Magazine 30 (1954) 277- 292.

[60] Foster, M. D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional 354 – B (1962) 1–146.

[61] Hayes J. B., "Polytypism of chlorite in sedimentary rocks", Clays Clay Mineralogy 18 (1970) 285-306.

[62] Bailey S. W., "Cholorites: Structurs and crystal chemistry. In Hydrous phyllosilicates (exclusive of micas). S. W. Bailey (ed)", Mineralogical Society of America. Reviews in Mineralogy 19 (1988) 347-403.

[63] Abdel Fattah M., Abdel Rahman M. A., "Chlorites of igneous rocks: mineral chemistry and paragenesis", Mineralogical Magazine 59 (1995) 129-141.

[64] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks", Springer, Verlag, Berlin, Heidelberg (2002).

[1] Barber D.J., Wenk H.R., Gomez-Barreiro J., Rybacki E., Dresen G., "Basal slip and texture development in calcite: new results from torsion experiments", Physics and Chemistry of Minerals 34 (2007) 73–84.

[2] Ferrill D.A., Morris A.P., Evans M.A., Burkhard M., Groshong R.H. Jr., Onasch C.M., "Calcite twin morphology: a low-temperature deformation geothermometer", Journal of Structural Geology 26 (2004) 1521–1529.

[3] Turner F.J., Griggs D., Heard H.C., "Experimental deformation of calcite crystals", Geological Society of America Bulletin 65 (1954) 883–934.

[4] Burkhard M., "Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review", Journal of Structural Geology 15 (1993) 351-368.

[5] Barnett M.R., "Twinning and the ductility of magnesium alloys", Materials Science and Engineering A 464 (2007) 1–7.

[6] Beyerlein I. J., Tomé C.N., "Adislocation-based constitutive law for pure Zr including temperature effects", International Journal of Plasticity 24 (2008) 867–895.

[7] Astafurova E.G., Chumlyakov Y.I., "Strain hardening upon twinning of [111], [144], and [011] single crystals of hadfield steel", Physics of Metals and Metallography 108 (2009) 510– 518.

[8] Blenkinsop T., "Deformation Microstructures and Mechanisms in Minerals and Rocks", Kluwer Academic Publishers, New York (2002).

[9] Cathelineau M., Nieva D., " A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system", Contributions to Mineralogy and Petrology 91 (1985) 235-244.

[10] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature", Clay Minerals 23 (1988) 471–485.

[11] Martinez-Serrano R. G., Dubois M., "Chemical variations in chlorite at the Los Humeros geothermal system, Mexico", Clays and Clay Minerals 6 (1998) 615-628.

[12] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock-forming minerals", 2nd edition, Longman, London (1992).

[13] Caritat P. D., Hutcheon I., Walshe J. L., "Chlorite geothermometry: a review", Clays and Clay Minerals 41 (1993) 219-239.

[14] Klein E.L., Koppe J. C., "Chlorite geothermometry and physicochemical conditions of gold mineralization in the paleoproterozoic Caxias deposit, Sao Luis craton, northern Brazil", Geochimica Brasiliensis 14 (2000) 219-232.

[15] A´rkai P., Mata M. P., Giorgetti G., Peacor D. R., To´th M., "Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study", Journal of Metamorphic Geology 18 (2000) 531-550.

[16] Willner A. P., Hervé F., Massonne H., "Mineral chemistry and pressure–temperature evolution of two contrasting high-pressure–low-temperature belts in the Chonos Archipelago, Southern Chile", Journal of Petrology 41(3) (2000) 309-330.

[17] Moazzen M., "Chlorite-chloritoid-garnet equilibria and geothermometry in the Sanandaj-Sirjan metamorphic belt, southern IRAN", Iranian Journal of Science and Technology. Transaction A, 28 (A1) (2004) 65-78.

[18] Guidotti1 C. V., Sassi F. P., Comodi P., Zanazzi P. F., Blencoe J. G., "Slaty cleavage: does the crystal chemistry of layer silicates play a role in its development?", The Canadian Mineralogist 43(1) (2005) 311-325.

[19] Lee S. S., Guggenheim S., Dyar M. D., Guidotti C. V., "Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from metamorphosed rocks", American Mineralogist, 92(5-6) (2007) 954-965.

[20] Shabani T. A. A., "Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians", Journal of Sciences, Islamic Republic of Iran 20 (3) (2009) 265-275.

[21] Ciesielczuk J., "Chlorite from hydrothermally altered Strzelin and Borow granites (the for Sudetic block) An attempt of cholorite geothermometry application", Mineralogical Society of Poland – Special Parers 20 (2002) 74-76.

[22] Walshe J. L., "A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems", Economic. Geology 81 (1986) 681-703.

[23] Thiele O., "Zum alter der metamorphose in Zentral Iran", Mitteilungen der Geologischen Gesellschaft in Wien 58) 1966( 87-101.

[24] زمانی پدرام م.، حسینی ح.، شیخ الاسلامی م.ر.، هفت لنگ ر.، "نقشه زمین‌شناسی چهارگوش محلات با مقیاس 100000/1"، سازمان زمین شناسی و اکتشافات معدنی کشور (1386).

[25] اکبری م.، نصراصفهانی ع.، امامی ه.، وهابی مقدم ب.، "پترولوژی و ژئوشیمی توده نفوذی شمال خمین و بررسی پتانسیل معدنی منطقه مورد مطالعه،" پایان‌نامه کارشناسی ارشد، دانشگاه آزاد خوراسگان، 1388ص 1-146.

[26] سخایی ز.، داودیان دهکردی ع ر.، شبانیان بروجنی ن.، پایداری م.، " ژئوشیمی و موقعیت تکتونیکی سنگ‌های بازیک غرب سرکوبه (شمال خمین)"، پایان‌نامه کارشناسی ارشد، (1393) ص.117-1.

[27] آقانباتی ع.، 1385، "زمین‌شناسی ایران" سازمان زمین‌شناسی کشور، تهران، (1385) ص 586-1.

[28] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation", International Journal of Earth Sciences 94 (2005) 401-419.

[29] Braud J., "Les formations du Zagros dans la re´gion de Kermanshah (Iran) et leurs rapports structuraux", Comptes Rendus Academie Sciences 271(1970) 1241–1244.

[30] Talebian M., Jackson J., "Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone", Geophysical Journal International 150 (2002) 422–439.

[31] Dachs E., "PET: Petrological elementary tools for mathematica: an update", Computers and Geoscience 30 (2004) 173-182.

[32] Droop G. T. R., "A general equation for estimating Fe3+ in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria", Mineralogical Magazine 51 (1987) 431-437.

[33] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187.

[34] Rybacki E., Evans B., Janssen A., Wirth R., Dresen G., "Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments", Journal tectonophysics 21(4) (2013) 17.

[35] Turner F. J., "Nature and dynamic interpretation of deformation lamellae in calcite of

three marbles", American Journal Science 251 (1953) 276-298.

[36] Janssen C., Romer R. L., Hoffmann-Rothe A., Kesten, D., Al-Zubi H., "The Dead Sea transform: evidence for a strong fault?", Journal of Geology 112 ( 2004) 561–575.

[37] Lacombe O., "Calcite twins, a tool for tectonic studies in Thrust Belts and Stable Orogenic Forelands", Oil and Gas Science and Technology 65 (6) (2010) 809-838.

[38] Ferrill D. A., "Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone", Journal of Structural Geology 13 (1991) 667–675.

[39] Ferrill D. A., "Critical re-evaluation of differential stress estimates from calcite twins in coarse-grained limestone", Tectonophysics 285 (1998) 77–86.

[40] Passchier C. W., Trouw R. A. J., "Atlas of Mylonites - and related microstructures", 2nd edition, Springer, Verlag. Berlin (2010).

[41] Hurlbut J., Klein C., "Manual of mineralogy", John Wiley. Newyork (1977).

[42] Lanari P., Guillot S., Schwartz S., Vidal O., Tricart P., Riel N., Beyssac O., "Diachronous evolution of the alpine continental subduction wedge: evidence from P-T estimates in the Brianc¸onnais Zone houille`re (France—Western Alps)", Journal of Geodynamic 56–57 (2012) 39–54.

[43] Lanari P., Wagner Th., and Vidal O., "A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry", Contributions to Mineralogy and Petrology 167 (2014) 968.

[44] De Andrade V., Vidal O., Lewin E., O’Brien P., Agard P., "Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples", Journal Metamorphic Geology 24 (2006) 655–668.

[45] Yamato P., Agard P., Burov E., Le Pourhiet L., Jolivet L., Tiberi C., "Burial and exhumation in a subduction wedge: mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustre´s, western Alps)", Journal Geophysical Research 112: (2007) B07410.

[46] Schwartz, S., Tricart, P., Lardeaux, J. M., Guillot, S. and Vidal, O., "Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes luste´s, western Alps): evidences for tilting during Alpine collision", Geological Society of America Bulletin 121 (2009) 502–518.

[47] Tarantola A., Mullis J., Guillaume D., Dubessy J. de Capitani C., Adbelmoula M., "Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 C in the external part of the Central Alps, Switzerland", Lithos 112 (2009) 497–510.

[48] Plissart, G., Femenias, O., Maruntiu, M., Diot, H., Demaiffe, D., "Mineralogy and geo- thermometry of grabbro-derived listevenites in the Tisovita-Iutu ophiolite, Southwestern Romania", Canadian Mineralogist 47 (2009) 81–105.

[49] Saravanan, C. S., Mishra, B. and Jairam, M. S., "P-T conditions of mineralization in the Jonnagiri granitoid-hosted gold deposit, eastern Dharwar Craton, southern India: constraints from fluid inclusions and chlorite thermometry", Ore Geology Reviews 36: (2009) 333–349.

[50] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of chemical geothermometry to lowtemperature trioctahedral chlorites", Clays Clay Minerals 57 (2009) 371–382.

[51] Inoue A., Kurokawa K., Hatta T., "Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan", Research Geology 60 (2010) 52–70.

[52] Verlaguet A., Goffe´ B., Brunet F., Poinssot C., Vidal O., Findling N., Menut D., "Metamorphic veining and mass transfer in a chemically closed system: a case study in Alpine metabauxites (western Vanoise)", Journal Metamorphic Geology 29 (2011) 275–300.

[53] Ganne J., de Andrade V., Weinberg R. F., Vidal O., Dubacq B., Kagambega N., Naba S., Baratoux L., Jessell M., Allibon J., "Modern-style plate subduction preserved in the Palaeoproterozoic West African craton", Nature geoscience 5 (2012) 60–65.

[54] Grosch E. G., Vidal O., Abu-Alam T., McLoughlin N., "PTconstraints on the metamorphic evolution of the Paleoarchean Kromberg type-section, Barberton Greenstone Belt, South Africa", Journal Petrology 53 (2012) 513–545.

[55] Bourdelle F., Parra T., Chopin C., Beyssac O., "A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions", Contributions Mineralogy Petrology 165 (2013a) 723–735.

[56] Pourteau A., Sudo M., Candan O., Lanari P., Vidal O., Oberha¨nsli R., "Neotethys closure history of Anatolia: insights from 40Ar-39Ar geochronology and P-T estimation in high pressure metasedimentary rocks", Journal Metamorphic Geology 31 (2013) 585–606.

[57] Cantarero, I., Lanari P., Vidal O., Alias G., Trave´ A., Baque´s V., "Long-term fluid circulation in extensional faults in the central catalan coastal ranges: P-T constraints from neoformed chlorite and K-white mica", International Journal Earth Science. doi:10.1007/s00531-013-0963-8 (2013).

[58] Lanari P., Rolland Y., Schwartz S., Vidal O., Guillot S., Tricart P., Dumont T., "P-T-t estimation of syn-kinematic strain in low-grade quartz-feldspar bearing rocks using thermodynamic modeling and 40Ar/39Ar dating techniques: example of the Plande- Phasy shear zone unit (Brianc¸onnais Zone, Western Alps)",Terra Nova. doi:10.1111/ter (2013b) 12079.

[59] Hey M. H., "A new review of the chlorites", Mineralogical Magazine 30 (1954) 277- 292.

[60] Foster, M. D., "Interpretation of the composition of trioctahedral micas", United States Geological Survey Professional 354 – B (1962) 1–146.

[61] Hayes J. B., "Polytypism of chlorite in sedimentary rocks", Clays Clay Mineralogy 18 (1970) 285-306.

[62] Bailey S. W., "Cholorites: Structurs and crystal chemistry. In Hydrous phyllosilicates (exclusive of micas). S. W. Bailey (ed)", Mineralogical Society of America. Reviews in Mineralogy 19 (1988) 347-403.

[63] Abdel Fattah M., Abdel Rahman M. A., "Chlorites of igneous rocks: mineral chemistry and paragenesis", Mineralogical Magazine 59 (1995) 129-141.

[64] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks", Springer, Verlag, Berlin, Heidelberg (2002).