Iron oxide-copper-gold (IOCG) mineralization at Jalal-Abad deposit, northwest of Zarand

Abstract

Jalal-Abad iron deposit is located about 38 km northwest of Zarand town in Kerman Province. It contains 200 Mt iron ore with average chemical composition of
Fe = 45%, S =1.18% and P = 0.08%. Iron mineralization occurs in an Early Cambrian volcano–sedimentary sequence of Rizu series which is composed of sandy siltstone, siltstone, volcanoclastic rocks and dolomite. Small intrusive bodies of gabbro and dioritic dykes are exposed in the area. Iron mineralization at Jalal-Abad is concealed with scarce outcrop. The main ore mineral is magnetite, which is located deeply, and  has been oxidized to hematite in shallow dopth and along fractures. Pyrite and chalcopyrite are the main sulfide minerals and bismuthinite, arsenopyrite and covellite are present in minor amounts. Cu mineralization occurred in sulphide and oxide stages as dissemination, veins, veinlet and open space filling. Malachite, azourite and atacamite are common minerals at oxide stage. Native gold was detected as inclusions smaller than 50 µm in pyrite, chalcopyrite and magnetite hosts. Alteration in Jalal-Abad is widespread and sodic-calcic, chloritic, sericitic and silicic alteration halos formed around orebody. Sodic-calcic alteration (actinolite,tremolite, magnesiohornblend and magnetite assemblage) is common in the deep levels. The main gangue mineral is quartz in association with talc, chlorite, ferroactinolite and calcite. Fluid inclusion investigation in quartz shows that inclusions are formed at three phase (L+V+S) with halite as a solid phase. Homogenization temperature varies from 260 to 440 ºC and salinity varies from 30 up to 52 NaClwt% equivalents. The high salinity and homogenization temperature of fluid inclusions is similar to fluids with magmatic origin. Mineralogy, alteration, geochemistry and fluid inclusion studies indicate Jalal-Abad deposit is similar to IOCG deposits.

Keywords


[1] Hitzman M. W., Oreskes N., Einaudi M.T., "Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits ", Precambrian Research 58 (1992) 241-287.

[2] Groves D.I., Bierlein F.P., Meinert. L.D., Hitzman. M.W, "Iron oxide copper–gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits". Economic Geology 105 (2010) 641–654.

[3] Bonyadi Z., Davidson. G., Mehrabi. B., Meffre. S., Ghazban. F., "Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district,Iran:Insights from Paragenesis and geochemistry", ChemicalGeology 281 (2011) 253–269.

[4] Moore. F. and Modabberi. S., "Origin of Choghart iron oxide deposit, Bafg miningdistrict, centeral Iran: new isotopic and geochemical evidence", Jour Scien IRI 14 (3) (2003) 259-269.

[5] Daliran F., "Kiruna-type iron oxide-apatite ores and apatitites of the Bafg district, Iran, with an emphasis on the REE geochemistry of their apatites: in Porter, T. M. (ed.) Hydrothermal iron oxide copper-gold & related deposits", A global perspective. 2 (2002) 303-320.

[6] Technoexport., "Results of the survery of Zarand ore deposite", (1976) 104 p.

[7] مهرابی ب.، کریمی شهرکی ب.، "کانسار جلال آباد نمونه ای از کانسارهای اکسید آهن گرمابی"، بیست و دومین همایش علوم زمین، سازمان زمین شناسی کشور (1382).

[8] کریمی شهرکی ، ب.، "بررسی ژئوشیمیایی و زمین شناسی اقتصادی کانسار آهن جلال آباد زرند" .پایان نامه کارشناسی ارشد، دانشگاه تربیت معلم (1382), ص 180.

[9] Ramezani J. and Tucker. R.D., "The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics", American Journal of Science 303 (2003) 622-665.

[10] Forster. H., and Jafarzadeh, A., "The Bafq mining district in central Iran ahighly mineralized Infracambrian Volcanic Field", Economic Geology 89 (1994) 1697-1721.

[11] Monteiro. L.V.S., Xavier. R.P., Hitzman. M.W., Caetano Juliani. C., Filho. C.R.S., Carvalho. E.R., "Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil", Ore Geology Reviews 34 (2008) 317–336.

[12] Dupuis. C., Beaudoin. G., "Discriminant diagrams for iron oxide trace element finger printing of mineral deposit types", Miner Deposita 46 (2011) 319–335.

[13] Leake. B.E., Woolley. A.R., Arps. C.E.S., Birch. W.D., Gilbert. M.C., Grice. G.D., Hawthorne. F.C., Kato. A., Kisch. H.J., Krivovichev. V.G., Linthout. K., Laird. J., Mandarino. J., Maresch. W.V., Nickel. E.H., Rock. N.M.S., Shumacher. J.C., Smith. D.C., Stephenson. N.C.N., Ungaretti. L., Wittaker. E.J.W., Youzhi. G., "Nomenclature of amphiboles.Report of Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names", European Journal of Mineralogy 9 (1997) 623–651.

[14] Shepherd TJ., Chenery SR., "Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study", Geochimica et Cosmochimica Acta 59 (1995) 3997−4007.

[15] Bakker RJ., Package FLUIDS 1. "Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol 194 (2003) 3–23

[16] Sterner SM., Hall DL., Bodnar RJ., Synthetic fluid inclusions V: solubility relations in the system NaCl–KCl–H2O under vaporsaturated conditions. Geochim Cosmochim Acta 52 (1988) 989–1005

[17] Barton M.D., Johnson D.A., "Footprints of Fe-oxide (Cu-Au) systems: University of Western Australia", Centre for Global Metallogeny Special Publication 33 (2004)112–116.

[18] Williams P., "Classifying IOCG deposits. In: Exploring for iron oxide copper–gold deposits: Canada and global analogues", Geological Association of Canada 20 (2010a) 11–19.

[19] Mark G., Oliver N.H.S, and Carew M.J., "Insights into the genesis and diversity of epigenetic Cu–Au mineralisation in the Cloncurry district, Mt. Isa Inlier, Northwest Queensland", Australian Journal of Earth Sciences 53 (2006a) 109–124.

[20] Hunt, J.A., Baker, T., Cleverly, J., Davidson, G.J., Fallick, A.E., and Thorkelson, D.J., "Fluid inclusion and stable isotope constraints on the origin of Wernecke Breccia and associated iron oxide–copper–gold mineralization, Yukon", Canadian Journal of Earth Sciences. 48 (2011) 1425–1445.

[21] Barton M.D., Kreiner D.C., Jensen E.P., and Girardi J.D., "Superimposed hydrothermal systems and related IOCG and porphyry mineralization near Copiapo´,Chile. In: Proceedings of the 11th Biennial SGA Meeting, Society for Geology Applied to Ore Deposits", Antofagasta, Chile (2011b) 521–523.

[22] Zhang H.F., Zhu R.X., Santosh M., Ying J.F., Su B.X., Hu Y., "Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: implications for craton destruction", Gondwana Research 23 (2013) 95–107.

[23] Pollard P.J., "An intrusion-related origin for Cu–Au mineralization in iron oxide– copper–gold (IOCG) provinces", Mineralium Deposita 41 (2006) 179–187.

[24] Baker T., Mustard R., Fu B., Williams, P.J., Dong G., Fisher L., Mark G., and Ryan, C.G., "Mixed messages in iron-oxide-copper-gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions", Mineralium Deposita 43 (2008) 599–608.

[25] آل‌طه کوهبنانی، ب.، "مطالعه پترولوژی و ژئوشیمی سنگهای آذرین شرق زرند کرمان"، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، دانشکده علوم (1373)، ص 190.

[26] درویش زاده، علی، ، "زمین شناس ایران"، انتشارات نشر دانش امروز، تهران، (1370) ص901.

[27] Berberian. M. and king. G.C. P., "Towards a Paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210-265.

[28] Yardley B.W.D., "100th Anniversary Special Paper: metal concentrations in crustal fluids and their relationship to ore formation", Economic Geology 100 (4) (2005) 613–632.

[29] Rieger A.A., Marschik R., Diaz M., "The hypogene iron oxide copper–gold mineralization in the Mantoverde District", Northern Chile, Economic Geology105 (2010) 1271–1299.