دما و فشارسنجی و ژئوشیمی توده‌های باردار و عقیم در محور دهج-میدوک با استفاده از شیمی بیوتیت (شمال شهربابک)

نویسندگان

دانشگاه شهید بهشتی

چکیده

سنگ­های مورد بررسی در محور دهج-میدوک در شمال شهر بابک قرار دارند. در این منطقه، در مجموع هشت توده پورفیری نیمه عمیق شامل میدوک، پرکام، ایجو، سقینو، نرکوه، ایوب انصار، سرا و کدر دیده شده­اند که از میان آنها توده­های پرکام، ایجو، سقینو و میدوک باردار بوده و توده­های نرکوه، ایوب انصار، سرا و کدر عقیم­اند. ترکیب سنگ­شناسی این مجموعه­ها بیشتر شامل کوارتزدیوریت و گرانودیوریت است. کانی­های غالب در ترکیب این سنگ­ها شامل پلاژیوکلاز، آمفیبول، بیوتیت، پیروکسن، پتاسیم فلدسپار و کوارتز. بیوتیت به عنوان یکی از شاخص­ترین کانی­های فرومنیزین در این سنگ­ها محسوب می­شود. از نظر ترکیب شیمیایی همه بیوتیت­ها (توده­های باردار و نیز توده­های عقیم) در بین قطب آنیت و سیدروفیلیت قرار گرفته­اند. بیوتیت­های توده­های عقیم از نوع ماگمایی اولیه هستند ولی بیوتیت­های توده­های باردار علاوه بر اینکه به صورت اولیه نیز دیده شده­اند در گستره­ی بیوتیت­های دوباره متعادل شده و بیوتیت­های دگرسان شده نیز قرار می­گیرند. بررسی چگونگی اکسایش و احیای ماگمای خاستگاه توده­های مورد بحث بر اساس ترکیب بیوتیت، بیانگر برقراری شرایط اکسیدی و فوگاسیته­ی اکسیژن بالاست. این شواهد نشان می­دهند که سنگ­های مورد بررسی سری مگنتیتی بوده و ماگما در شرایط اکسایش و در مرز ورقه­های همگرا تشکیل شده­اند. دمای جایگیری توده­های باردار بر اساس تیتانیوم در بیوتیت، بین 548 تا 574 درجه­ی سانتی­گراد بوده و این دما برای توده­های عقیم بین 749 تا 805 درجه­ی سانتی­گراد محاسبه شده است. همچنین فشار محاسبه شده براساس آلومینیم کل بیوتیت برای توده­های باردار kb 22/0 تا kb 87/0 و برای توده­های عقیم kb 15/1 تا kb 94/1 است. محتوی آلومینیم کل بیوتیت برای توده­های باردار بین 3/2 تا 9/2 و برای توده­های عقیم بالاتر از 3/3 است. این داده­ها نشان می­دهند که بر اساس روش یوشیدا و همکاران، سنگ­های توده­های باردار، توانایی خوبی در کانه­زایی مس دارند. در نهایت اینکه شاره­های وابسته در توده­های باردار میزان log(fH2O/fHCl) بالاتری نسبت به شاره­های وابسته به توده­های عقیم دارند.     

کلیدواژه‌ها


عنوان مقاله [English]

Biotite chemistry and thermobarometry of barren and productive intrusive bodies in Dehaj-Meiduk area (North Shahrbabak)

چکیده [English]

Studied rocks are located in Dehaj-Meiduk area north of Shahrbabak.There are eight porphyry intrusive bodies in this region including Meiduk, Parkam, Iejoo, Segino, Narkoh, Ayoub ansar, Sara and Keder that Meiduk, Parkam, Iejoo nad Segino are productive and Narkoh, Ayoub ansar and Sara are barren. The intrusive bodies are composed of quartzdiorite and granodiorite. The intrusive bodies are mainly composed of plagioclase, amphibole, biotite, Pyroxene, alkali-feldspar and quartz. Biotite is one of the most ferromagnesian mineral of these rocks. Compositionally, all biotites (barren and productive intrusive bodies) are situated between annite and siderophylite. Biotites in barren intrusive bodies are primary magmatic but biotites in productive intrusive bodies are primary, reequilibrated and altered. The study of oxidation and reduction state of their source magma by biotite chemistry indicates the crystallization in oxidation conditions and high oxygen fugacity. Therefore biotite rich intrusive bodies in Dehaj-Meiduk area complex are I-type or related to magnetite series and the estimated oxygen fugacity imply oxidation magma and its formation in convergent plate boundary. Emplacement or crystallization temperature for intrusive bodies in Dehaj-Meiduk area based on, Ti-in-Biotite thermometer, has been achieved between 548 to 574 ºc for productive intrusive bodies and 749 to 805 ºc for barren intrusive bodies. Also Al-barometer accounts that the pressure of biotites crystallization is 0.22 to 0.78K bar for productive intrusive bodies and 1.15 to 1.94 Kbar for barren intrusive bodies. The AlT content of biotite is 2.3 to 2.9 for productive intrusive bodies and higher than 3.3 for barren intrusive bodies. These data confirm that productive intrusive bodies has a good ability for copper mineralization based on Uchida et al. Method. Finally, the fluid related to productive intrusive bodies have log (fH2O / fHCl) higher than the fluid related to barren intrusive bodies.

کلیدواژه‌ها [English]

  • Dehaj-Meiduk area
  • Urumieh-Dokhtar magmatic belt
  • Mineral chemistry
  • Thermobarometry
  • AlT content of biotite
[1] Thomas W., Ernst W.G., "The aluminum content of hornblende in calc-alkaline granitic rocks; a mineralogic barometer calibrated experimentally to 12 kbars In: Spencer RJ, Chou I-M, (eds) Fluid–mineral interactions: a tribute to H.P. Eugster", Geochem. Soc Spec Publ, 2, )1990( 59–63.

[2] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks. Berlin, eidelberg, New York, Springer-Verlag, 7th edition, 341 p.Dasgupta, S., Sengupta, P., Guha, D. & Fukuoka, M., 1991- A refined garnet-biotite Fe-Mg exchange geothermometer and its application inamphibolites and granulites", Contributions to Mineralogy and Petrology, 109, (2002) 130-137.

[3] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure; an experimental calibration of the Al-in-hornblende barometer", Contrib Mineral Petrol 110,)1992( 304–310.

[4] Uchida E., Endo S., Makino M., "Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits", Resource Geology, 57, (2007) 47–56.

[5] Deer W.A., Howie R.A., Zussman, J. "An introduction to the rock-forming minerals", 2nd edition,Longman, Harlow )1992.(

[6] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", C. R. Geoscience 337, (2005) 1415–1420.

[7] Bazine A., Hubner P., "Copper deposite in Iran" G.S.I. (1969) Report number: 13.

[8] مرادیان شهربابکی، ع.، "بررسی پترولوژی و ارزیابی اقتصادی سنگ‌های فلدسپاتوئید‌دار شهربابک- جوزم"، (1369)، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، 254 صفحه.

[9] بیابانگرد ع.، "پتروگرافی و پترولوژی سنگ‌های نیمه آتشفشانی شهربابک – جوزم"، (1378)، پایان نامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه شهید باهنر کرمان، 234 صفحه.

[10] Hassanzadeh J., "Metallogenic events in the Se sector of the Cenozoic active continental margine of iran (Shahr-e-Babak area), Kerman province" (1993) Unpublished PhD Thesis, University of California, Los Angeles. 204 pp.

[11] اسدی‌پور ع.، "پتروگرافی، ژئوشیمی و پترولوژی توده‌ها و زیر ولکانیک کالدرای استراتوولکان مزاحیم"، (1381) شرکت ملی صنایع مس ایران، شماره گزارش 146، 430 صفحه.

[12] قزوینی ا.، "بررسی زمین‌شناسی اقتصادی کانسار مس میدوک"، (1371)، رساله کارشناسی ارشد، دانشکده علوم زمین، دانشگاه شهید بهشتی، 261 صفحه.

[13] قربانی م.، "ارزیابی پتانسیل‌های مس پورفیری در زیر زون آبدر‌– دهج به مرکزیت میدوک"، (1387)، شرکت ملی صنایع مس ایران، شماره گزارش 273، 347 صفحه.

[14] پروین‌پور ف.، "مطالعات زمین‌شناسی اقتصادی کانسارهای مس پورفیری زیر زون آبدر- دهج (شمال غرب کرمان)"، (1386)، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، 287 صفحه.

[15] عطاپور ح.، آفتابی ع.، "ژئوشیمی و متالوژنی سنگ‌های کلسیمی قلیایی ، شوشونیتی و آداکیتی درارتباط با کانسارسازی مس – مولیبدن پورفیری و رگه ای در کمربند آتشفشانی نفوذی دهج – ساردوئیه، کرمان"، فصلنامه علوم زمین, شماره 72، صفحه 170-161.

[16] Berberian F., Berberian M., "Tectono-plutonic episodes in Iran, In: Zagros, Hidu Kush and Himalaya Geodynamic Evolution", Am. Geophys. :union:, Geodynamic Series 3(1981) 5-32.

[17] Dimitrijevic M.D., "Geology of Kerman region" (1973) Report YU/52, Iran, Geological Survey of Iran, 234 p.

[18] Beane R. E., " Biotite stability in the porphyry copper environment" , Economic Geology 69 (1974) 241-256.

[19] Ilton E. S., Veblen D. R., " Origin and mode of copper enrichment in biotite from rocks associated with porphyry copper deposits: a transmission electron microscopy investigation" , Economic Geology 88(1993) 885-900.

[20] Abrecht J., Hewitt D.A., "Experimental evidence on the substitution of tin in biotite", Am. Miner. 73 (1988) 1275–1284.

[21] Robert J.L., "Titanium solubility in synthetic phlogopite solid solutions", Chem. Geol. 17 (1976) 213–227.

[22] Abdel-Rahman A., "Nature of biotites from alkaline, calc-alkaline, and peraluminous Magmas", J. Petrol. 35 (1994) (2) 525–541.

[23] Wones D. R., Eugster H. P., "Stability of biotite: experiment, theory and application", Am. Mineral. 128 (1965) 50 -72.

[24] Castro A., Stephen W. E., "Amphibole rich clots in calcalkalin granitic rocks and their enclaves", The Canadian Mineralogist 30(1992) 1093-1112.

[25] Ewart A., "A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic and related salic volcanic rocks. In Fred Barker, Ed., Trondhjemites, dacites, and related rocks", Springer-Verlag, (1979) 12-101.

[26] Nockolds S. R., "The relation between chemical composition and paragenesis in the biotite micas of igneous rocks". American Journal of Science., 245, 7, (1947) 401-420.

[27] Helmy H. M., Ahmed A. F., El Mahallawi M. M., Ali S. M., “Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic Implications” Journal of African Earth Sciences 38(2004) 255–268.

[28] Henry D.J., Guidotti C.V., Thomson J.A. "The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms", American Mineralogist, 90, (2005) 316-328.

[29] Hammarstrom J. M., Zen E., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist 71(1986) 1297-1313.

[30] Anderson J.L., Smith D.R., "The effects of temperature and fO2 on the Al-in-hornblende barometer", Am Mineral 80 )1995 (549– 559.

[31] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks" Geology 17 (1989) 837–841.

[32] Hall, A., "Igneous petrology" Longman, (1987) London, 573 P.

[33] McInnes B. I. A, Evans N. J., Fu F. Q. Garwin S., "Application of thermochronology to hydrothermal ore deposits", Reviews in Mineralogy & Geochemistry, 58(2005) 467-498.

[34] Eugene S., Ilton E. S. Veblen D. R., "Copper inclusions in sheet silicates from porphyry Cu deposits" , Nature 334 (1988) 516-518.