The Effect of calcination temperature on the structure properties of ZrO2 nanoparticles synthesized by modified sol gel ingelatin media

Abstract

In this research, ZrO2 nanoparticles were synthesized by modified sol-gelmethod at different calcination temperatures (600, 800, 1000, 1200 °C).  Zirconium (IV) oxynitrate hydrate as zirconium source, gelatin as polymerization and stabilizer agent and distilled water was used as the solvent. The crystal structures of the synthesized samples were characterized by X-ray diffraction (XRD) and the average crystallite size was estimated by Scherrer fomula and Williamson-Hall method. Transmission electron microscopy (TEM) images showed that the average particle size of zirconia calcined at 600 and 1200°C are 10 and 32 nm, respectively. FTIR analysis in the range of 400-4000 cm-1 was  carried out, the results of FTIR showed that the samples are calcined at 600 and 1200 °C have tetragonal and monoclinc structure, respectively. FT-IR spectroscopy analyses of the synthesized samples confirmed the XRD results.  

Keywords


[1] Goharshadi E.K., Hadadian M., "Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles", Ceramics International, 38 (2012) 1771-1777.

[2] Torabmostaedi H., Zhang T., Foot P., Dembele S., Fernandez C., "Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate", Powder Technology, 246 (2013) 419-433.

[3] Channu V.R., Kalluru R.R., Schlesinger M., Mehring M., Holze R., "Synthesis and characterization of ZrO2 nanoparticles for optical and electrochemical applications", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 386 (2011) 151-157.

[4] Wang X., Zhai B., Yang M., Han W., Shao X., "ZrO2/CeO2 nanocomposite: Two step synthesis, microstructure, and visible-light photocatalytic activity", Materials Letters, 112 (2013) 90-93.

[5] Eltejaei H., Towfighi J., Bozorgzadeh H.R., Omidkhah M.R., Zamaniyan A., "The influence of preparation conditions on ZrO2 nanoparticles with different PEG–PPG–PEG surfactants by statistical experimental design", Materials Letters, 65 (2011) 2913-2916.

[6] Kuwabara A., Tohei T., Yamamoto T., Tanaka I., "Ab initio lattice dynamics and phase transformations of ZrO2", Physical Review B, 71 (2005) 064301.

[7] Sreethawong T., Ngamsinlapasathian S., Yoshikawa S., "Synthesis of crystalline mesoporous-assembled ZrO2 nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity", Chemical engineering journal, 228 (2013) 256-262.

[8] Gnanamoorthi K., Balakrishnan M., Mariappan R., Kumar E.R., "Effect of Ce doping on microstructural, morphological and optical properties of ZrO2 nanoparticles", Materials Science in Semiconductor Processing, 30 (2015) 518-526.

[9] Tahir M.N., Gorgishvili L., Li J., Gorelik T., Kolb U., Nasdala L., Tremel W., "Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles", Solid State Sciences, 9 (2007) 1105-1109.

[10] Shi T., Cai Y., Liu L., Zhou X., "Formation process of m- ZrO2 nanoparticles by the oil/water interface method combined with seeding technique", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469 (2015) 83-92.

[11] Lin C., Zhang C., Lin J., "Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol-gel process", The Journal of Physical Chemistry C, 111 (2007) 3300-3307.

[12] Maitre A., Lefort P., "Solid state reaction of zirconia with carbon", Solid State Ionics, 104 (1997) 109-122.

[13] Wang S., Li X., Zhai Y., Wang K., "Preparation of homodispersed nano zirconia", Powder technology, 168 (2006) 53-58.

[14] Tai C.Y., Hsiao B.-Y., Chiu H.-Y., "Preparation of silazane grafted yttria-stabilized zirconia nanocrystals via water/CTAB/hexanol reverse microemulsion", Materials Letters, 61 (2007) 834-836.

[15] Meskin P.E., Ivanov V.K., Barantchikov A.E., Churagulov B.R., Tretyakov Y.D., "Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders", Ultrasonics sonochemistry, 13 (2006) 47-53.

[16] Ravichandran A., Pushpa K.C.S., Ravichandran K., Karthika K., Nagabhushana B., Mantha S., Swaminathan K., "Effect of Al doping on the structural and optical properties of ZrO2 nanopowders synthesized using solution combustion method", Superlattices and Microstructures, 75 (2014) 533-542.

[17] Kumar S., Bhunia S., Ojha A.K., "Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO2 nanostructures", Physica E: Low-dimensional Systems and Nanostructures, 66 (2015) 74-80.

[18] Garvie R.C., "The occurrence of metastable tetragonal zirconia as a crystallite size effect", The journal of physical chemistry, 69 (1965) 1238-1243.

[19] Zak A.K., Majid W.A., Abrishami M.E., Yousefi R., "X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods", Solid State Sciences, 13 (2011) 251-256.

[20] Shukla S., Seal S., Vij R., Bandyopadhyay S., "Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia", Nano letters, 3 (2003) 397-401.