Source and geothermobarometry of the gabbrodioritic intrusive body, (S- Qorveh –Kurdistan); with emphasis on minerals chemistry

Abstract

Gabbrodioritic pluton is located in S-Qorveh in nourthern parts of the Sanandaj-Sirjan Zone. Petrographically, amphibole and plagioclase are main minerals in these rocks. Amphiboles are calcic-type, and their composition varied between ferro-hornblende to magnesio-hornblende. Anortite contents in plagioclases are between 81 to 39 (%) and these crystal are labradore -oligoclase in composition. According to coexist hornblende-plagioclase and Al in amphibole geothermometry methods, temperatures of crystallization are yielded ~723°C. In the later method, data indicates that the investigated rocks were emplaced at average pressure of 3.5 Kbar corresponding to a depth of ~12 Km. Oxygen fugacity was high in magma. Na2O content in amphibole and their calc-alkaline nature show gabbroic diorites are related to subduction setting. Mg#, Al2O3 and TiO2 contents in hornblende indicate mixing of crustal and mantle sources to generate magma of the Darvazeh gabbrodioritic magma. Variations in the composition of plagioclase may be related to H2O content in environment and the role of  chemical variation due to input of crustal materials.

Keywords


[1] Rutter M. J., Van der Laan S. R., Wyllie P. J., “Experimental data for a proposed empirical igneous geobarometer: Aluminium in hornblende at 10 kbar pressure”, Geology 17 (1989) 897-900.

[2] Hammarstrom J.M., Zen E., “Aluminum in hornblende: An empirical igneous geobarometer” American Mineralogist 71 (1986) 1297-1313.

[3] Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H. and Sisson V.B. "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons". American Mineralogist 72 (1987) 231-239.

[4] Johnson M. C., Rutherford M. J, "Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks", Geology 17 (1989) 837-841.

[5] Blundy J.D., Holland T.J.B., “Calcic amphibole equilibria and a new amphiboleplagioclase geothermometer”, Contribution Mineralogy and Petrology 104 (1990) 208-224.

[6] Schmidt M.W., “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in hornblende barometer”, Contribution Mineralogy and Petrology, 110 (1992) 304-310.

[7] Anderson J. L., Smith D. R., “The effects of temperature and fO2 on the Al-in-hornblende barometer”, American Mineralogist 80 (1995) 549-59.

[8] Ridolfi F., Renzulli A., Puerini M., "Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes", Contributions to Mineralogy and Petrology 160 (2010) 45-66

[9] Stein E., Dietl C., "Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald", Mineralogy and Petrology 72 (2001) 185-207.

[10] Uchida E., Endo S., Makino M., “Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits”, Resource Geology 57 (2007) 47-56.

[11] Anderson J. L., Barth A. P.,Wooden J. L., Mazdab F., “Thermometers and thermobarometers in granitic systems”. Reviews in Mineralogy and Geochemistry 69 (2008) 121-42.

[12] Hossain I., Tsunogae T., Rajesh H. M., “Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate”, Journal of Asian Earth Sciences 34 (2009) 731–9.

[13] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., “U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran”, Journal of Asian Earth Sciences 41 (2011) 238-249.

[14] Azizi H., Najari M., Asahara Y., Catlos E. J., Shimizu M., Yamamoto K., “U–Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj–Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic”, Tectonophysics 660 (2015) 47-64.

[15] Yajam S., Montero P., Scarrow J. H., Ghalamghash J., Razavi S. M. H., Bea F., “The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence”, Geologica Acta 13(1) (2015) 25 - 43.

]16[ حسینی م.، "شرح نقشه زمین‌شناسی1:100000 چهارگوش قروه"، سازمان زمین‌شناسی و اکتشاف معدنی کشور، (1376).

]17 [حریری ع.، "نگرشی بر خاستگاه گروهی از سنگ‌های دگرگونه گستره قروه"، پایان‌نامه کارشناسی‌ارشد، دانشگاه شهید بهشتی، (1374) 161 ص.

]18[ رضوانی ز.، "مطالعه پتروگرافی و شیمی سنگ‌های دگرگونی مجاورتی منطقه زرینه"، جنوب قروه، کردستان، پایان‌نامه کارشناسی ارشد، دانشگاه بوعلی‌سینا، (1394) 117 صفحه.

[19] Leake B. E., Woolly A .R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.h., Rock N.M.S., Schmucher J.C., Smith D. C., Stephenson N. C. N, Unungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of Amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals Names”, Europian Journal of Mineralogy 9 (1997) 623-651.

[20] Agemar T., Worner G., Heumann A., "Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?", Contribution to Mineralogy and Petrology 136 (1999) 331-344.

[21] Bottinga Y., Kudo A., Weil D.,“Some observation of oscillatory zoning and crystallization of magmatic plagioclase”, American Mineralogist 51(1966) 292-806.

[22] Hasse C S., Chadam J., Feinn D., Otoleva P.,“Oscillatory zoning in plagioclase feldspar”, Science 299 (1980) 272 _ 274.

[23] Nelson S.T., Montana A., “Sieve- texture plagioclase in volcanic rocks production by rapid decompression”, American Mineralogist 77 (1992) 1242-1279.

[24] Bateman R., “The interplay between crystallization, replenishment and hybridization in large felsic magma chambers”, Earth Science Reviews 39 (1995) 91-106.

[25] Pearce T.H., Kolinsnick A.M., “Observation of plagioclase zoning using interference imagimg”, Earth Science Reviews 2 (1990) 9-26.

[26] Loomis T. P., Welber P. W., “Crystallization processes in the compositional zoning of plagioclase”, Contribution Mineralogy and Petrology 81 (1982) 230-239.

[27] Coltorti M., Bonadiman C., Faccini B., Grégoire M., O'Reilly S.Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantle", Lithos 99 (2007) 68-84.

[28] Molina J., Scarrow J., Montero P.G., Bea F., “High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia”, Contribution to Mineralogy and Petrology 158 (2009) 69-98.

[29] Jiang C. Y., An S. Y., “On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance”, Journal of Mineralogy and Petrololgy 3 (1984) 1-9.

[30] Xie Y.W., Zhang Y.Q., “Peculiarities and genetic significance of hornblende from granite in the Hengduansan region”, Acta Metallurgica Sinica 10 (1990) 35-45.

[31] Huaimin X., Shuwen D., Ping J., “Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen Science in China: Series D”, Earth Sciences 49 (2006) 684-695.

[32] Esawi E.K., “Amph-Class: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendation of the international mineralogical Association”, Computers Geosciences 30 (2004) 753-760.

[33] Tuloch A. J., Challis G. A., “Emplacement depths of Palezoic-Mesozoic plutons from western New Zealand estimated by hornblende-Al geobarometry”. New Zealand Journal of Geology and Geophysics 43 (2000) 555-567.

[34] Holland T., Blundy J., ''Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry'', Contributions to Mineralogy and Petrology 116 (1994) 433-447.

[35] Otten MT., “The origin of brown hornblende in Artfjallet gabbro and dolerites”, Contribution to Mineralogy and Petrology 86 (1984) 189-199.

[36] Hynes A., “A comparison of amphiboles from medium and low pressure metabasites”, Contributions of Mineralogy and Petrology 81 (1982) 119-125.

[37] Wones D. R., “Significance of the assemblage titanite + mognetitet + quartz in granitic rocks”, American Mineralogist 74 (1989) 744-749.

[38] Enami M., Suzuki K., Liou J.G., Bird D.K., “Al–Fe3+ and F– OH substitutions in titanite and constrains on their P–T dependence”, European Journal of Mineralogy 5 (1993) 231–291.

[39] Bogaerts M., Scaillet B., Auwera J.V., “Phase equilibria of the Lyngdal granodiorite (Norway): implications for the origin of metaluminous ferroan granitoids”, Journal of petrology 47 (2006) 2405–2431.

[40] Pichavant M., Martel C., Bourdier J. L., Scaillet B., “Physical conditions, structure, and dynamics of a zoned magma chamber: Mt. Peleé (Martinique, Lesser Antilles Arc)”, Journal of Geophysical Research (2002) 107.

[41] Prouteau G., Scaillet B., “Experimental constraints on the origin of the 1991 Pinatubo dacite”, Journal of Petrology 44 (2003) 2203-2241.

[42] Enami M., Suzuki K., Liou J.G., “Bird D.K., Al–Fe3+ and F– OH substitutions in titanite and constrains on their P–T dependence”, European Journal of Mineralogy, 5 (1993), 231–291

[43] Ewart A., ''A review of the mineralogy and chemistry of tertiary recent dacitic, latitic, rhyolitic and related salic volcanic rocks, In: Fred, B. (Ed), Trondhjemites, dacites, and related rocks'', (1979).

[44] Anderson J.L., “Status of thermo-barometry in granitic batholiths”, Earth Science Review 87 (1996) 125-138.